SINTESIS NANOPARTIKEL *NICKEL FERRITE* (NiFe₂O₄) DAN APLIKASINYA UNTUK PENYISIHAN MERKURI (Hg)

TUGAS AKHIR

Diajukan Oleh:

RACHMITA GEUBRINA RASZKY NIM. 170702048 Mahasiswa Fakultas Sains dan Teknologi Program Studi Teknik Lingkungan

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI AR-RANIRY DARUSSALAM – BANDA ACEH 2021 M / 1442 H

LEMBAR PERSETUJUAN TUGAS AKHIR

SINTESIS NANOPARTIKEL *NICKEL FERRITE* (NiFe₂O₄) DAN APLIKASINYA UNTUK PENYISIHAN MERKURI (Hg)

TUGAS AKHIR

Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry Banda Aceh Sebagai Beban Studi Memperoleh Gelar Sarjana dalam Ilmu Teknik Lingkungan

Diajukan Oleh:

RACHMITA GEUBRINA RASZKY NIM. 170702048 Mahasiswa Program Studi Teknik Lingkungan Fakultas Sains dan Teknologi UIN Ar-Raniry Banda Aceh

> Banda Aceh, 02 Agustus 2021 Telah Diperiksa dan Disetujui oleh:

<u>ما معة الرانرك</u>

Pembimbing I, R - R A N I R Y Pembimbing II,

a.n

Dr. Abd Mujahid Hamdan, M.Sc. NDN. 2013128901

Febrina Arfi, M.Si. NIDN. 2021028601

Mengetahui, Ketua Program Studi Teknik Lingkungan Fakultas Sains dan Teknologi UIN Ar-Raniry Banda Aceh

M Jur ans

Dr. Eng Nur Aida,M.Si. NIDN, 2016067801

LEMBAR PENGESAHAN TUGAS AKHIR

SINTESIS NANOPARTIKEL *NICKEL FERRITE* (NiFe₂O₄) DAN APLIKASINYA UNTUK PENYISIHAN MERKURI (Hg)

TUGAS AKHIR

LEMBAR PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan di bawah ini:

Nama	2	Rachmita Geubrina Raszky
NIM	:	170702048
Program Studi	:	Teknik Lingkungan
Fakultas	:	Sains dan Teknologi UIN Ar-Raniry Banda Aceh
Judul Skripsi	:	Sintesis Nanopartikel Nickel Ferrite (NiFe2O4) dan
		Aplikasinya untuk Penyisihan Merkuri (Hg)

Dengan ini menyatakan bahwa dalam penulisan skripsi ini, saya:

- 1. Mengerjakan sendiri karya ini dan mampu bertanggung jawab atas karya ini;
- 2 Karya tulis ini adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik apapun, baik di Universitas Islam Negeri Ar-Raniry Banda Aceh maupun di perguruan tinggi lainnya;
- 3. Karya tulis ini adalah merupakan gagasan, rumusan dan penelitian saya sendiri, tanpa bantuan pihak lain kecuali arahan Dosen Pembimbing;
- 4. Tidak melakukan plagiasi terhadap naskah karya orang lain;
- 5. Tidak menggunakan karya orang lain tanpa menyebutkan sumber asli atau tanpa izin pemilik karya; dan
- 6. Tidak memanipulasi dan memalsukan data.

Bila kemudian hari ada tuntutan dari pihak lain atas karya saya, dan telah melalui pembuktian yang dapat dipertanggungjawabkan dan ternyata memang ditemukan bukti bahwa saya melanggar pernyataan ini, maka saya siap dikenai sanksi berdasarkan aturan yang berlaku di Fakultas Sains dan Teknologi UIN Ar-Raniry Banda Aceh.

Banda Acel, Juli 2021 atakan. JX457242572 Rachmita Geubrina Raszky NIM, 170702048

ABSTRAK

Nama	:	Rachmita Geubrina Raszky			
NIM	:	170702048			
Program Studi	:	Teknik Lingkungan			
Judul	:	Sintesis Nanopartikel <i>Nickel Ferrite</i> (NiFe ₂ O ₄) dan Aplikasinya untuk Penyisihan Merkuri (Hg)			
Tanggal Sidang	:	2 Agustus 2021			
Jumlah Halaman	:	65			
Pembimbing I	:	Dr. Abd Mujahid Hamdan M.Sc.			
Pembimbing II	:	Febrina Arfi, M.Si.			
Kata Kunci	:	Nanopartikel, nickel ferrite (NiFe ₂ O ₄), fotokatalisis			

Sintesis nanopartikel adalah pembuatan nanopartikel dengan ukuran yang kurang dari 100 nm. Nanopartikel yang digunakan dalam penelitian ini yaitu nickel ferrite (NiFe₂O₄) suatu material magnetik halus dengan ciri-ciri magnetik saturasi tinggi, koersivitas rendah, permeabilitas magnetik tinggi, anisotropi rendah, suhu Curie tinggi, dan magnetostriksi (magnetostriction) rendah. Nanopartikel NiFe₂O₄ banyak diaplikasikan dalam berbagai bidang teknologi, seperti perangkat fotolistrik, katalisis, sensor, perangkat nano, perangkat *microwave* dan pigmen magnetik. Pada penelitian ini NiFe₂O₄ akan diaplikasikan sebagai material fotokatalisis dalam pendegradasian limbah merkuri (Hg). Sintesis nanopartikel NiFe₂O₄ pada penelitian ini dilakukan dengan metode kopresipitasi suhu rendah yaitu 90[°] C. Lalu dikarakterisasi menggunakan X-ray Diffractometer (XRD), Transmission Electron Microscopy (TEM) dan Spektrofotometer UV-Vis. Berdasarkan hasil karakterisasi XRD diperoleh ukuran kristalit sebesar 37,42 nm dan bersifat *polykristallin*. sampel nanopartikel NiFe₂O₄ dapat diasumsikan beraglomerasi sehingga sulit ditentukan ukuran butir berdasarkan citra TEM. Nanopartikel NiFe₂O₄ memiliki energi gap sebesar 3,17 Ev yang bersifat semikonduktor. Hasil persentase fotodegradasi menggunakan nanopartikel NiFe₂O₄ pada konsentrasi 5 ppm limbah Hg di 90 menit mampu mendegradasi sebesar 28,91%. Sementara pada konsentrasi 20 ppm terjadi peningkatan sebesar 34.61% pada 60 menit.

ABSTRACT

Name	:	Rachmita Geubrina Raszky
NIM	:	170702048
Department	:	Environmental Engineering
Title	:	Synthesis of Nickel Ferrite (NiFe ₂ O_4) Nanoparticles and Applications for Mercury (Hg) Removal
Date of Session	:	August 2, 2021
Number of pages	:	65
Advisor I	:	Dr. Abd Mujahid Hamdan M.Sc.
Advisor II	:	Febrina Arfi, M.Si.
Keywords	(:	Nanoparticles, nickel ferrite (NiFe ₂ O ₄), photocatalysis

Nanoparticle synthesis is the manufacture of nanoparticles with a size of less than 100 nm. The nanoparticles used in this study are nickel ferrite $(NiFe_2O_4)$, a fine magnetic material with magnetic characteristics of high saturation, low coercivity, high magnetic permeability, low anisotropy, high Curie temperature, and low magnetostriction. NiFe₂O₄ nanoparticles are widely applied in various technological fields, such as photoelectric devices, catalysis, sensors, nanodevices, microwave devices and magnetic pigments. In this study, NiFe₂ O_4 will be applied as a photocatalytic material in the degradation of mercury (Hg) waste. The synthesis of NiFe₂O₄ nanoparticles in this study was carried out using the low temperature coprecipitation method of 90° C. Then they were characterized using X-ray Diffractometer (XRD), Transmission Electron Microscopy (TEM) and UV-Vis Spectrophotometer. Based on the results of XRD characterization, the crystallite size was 37.42 nm and was polycrystalline. NiFe₂O₄ nanoparticle samples can be assumed to agglomerate so that it is difficult to determine grain size based on TEM images. NiFe₂ O_4 nanoparticles have an energy gap of 3.17 Ev which is a semiconductor. The percentage of photodegradation using NiFe₂ O_4 nanoparticles at a concentration of 5ppm Hg waste in 90 minutes was able to degrade 28.91%. While at a concentration of 20 ppm there was an increase of 34.61% at 60 minutes.

KATA PENGANTAR

Bismillahirrahmanirrahiim

Alhamdulillahirabbil 'alamin puji dan syukur dipanjatkan kehadirat Allah SWT, karena dengan rahmat dan hidayah-Nyalah sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan judul "Sintesis Nanopartikel *Nickel Ferrite* (NiFe₂O₄) dan Aplikasinya untuk Penyisihan Merkuri (Hg)". Tugas Akhir ini ditujukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik Lingkungan (ST) Strata Satu pada Program Studi Teknik Lingkungan, Fakultas Sains dan Teknologi, Universitas Islam Negeri Ar-Raniry Banda Aceh. Penghargaan dan terima kasih yang setulus-tulusnya kepada:

- 1. Ibu Dr. Eng. Nur Aida, M.Si, selaku Ketua Program Studi Teknik Lingkungan, Fakultas Sains dan Teknologi, Universitas Islam Negeri Ar-Raniry.
- Ibu Husnawati Yahya, S.Si., M.Sc. selaku Sekretaris Program Studi Teknik Lingkungan, Fakultas Sains dan Teknologi, Universitas Islam Negeri Ar-Raniry.
- Bapak Dr. Abd Mujahid Hamdan M.Sc., selaku Dosen Pembimbing I yang dimana telah banyak membantu dan membimbing penulis dalam menyelesaikan Tugas Akhir ini.
- Ibu Febrina Arfi, M.Si, selaku Dosen Pembimbing II yang telah banyak membantu memberi saran terbaik dan membimbing penulis dalam menyelesaikan Tugas Akhir ini.
- 5. Ibu Rizna Rahmi, S.Si., M.Sc. selaku Dosen Pembimbing Akademik yang telah banyak memberi arahan dan dukungan selama masa perkuliahan.
- 6. Seluruh Dosen Program Studi Teknik Lingkungan yang telah mengajarkan berbagai macam ilmu.
- Ibu Idariani dan Ibu Nurul Huda S.Pd beserta seluruh Staf/karyawan Fakultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry yang banyak membantu dalam proses administrasi.

- 8. Kemendikbud Ristek BRIN melalui Penelitian Kerjasama Antar Perguruan Tinggi Periode 2021-2022.
- 9. DIPA Universitas Samudra melalui Penelitian Dosen Unggulan Tahun 2021.
- 10. Kedua orang tua, ayahanda Taufiq Ertha dan ibunda Ummi Kalsum yang telah memberikan doa dan dukungan yang tiada henti-hentinya selama ini.
- 11. Abang tercinta Rachmad Almi Putra, yang telah memberi banyak bantuan dan dukungan dalam selama proses penelitian dan penulisan skripsi ini dimulai.
- 12. Kakak ipar Ardia Novita dan Adik kecil tersayang Rachysakan Triami Ertha beserta keluarga besar lainnya yang telah memberi banyak dukungan semangat kepada penulis dalam menyelesaikan penulisan skripsi ini.
- 13. Refsi Reka Saputri, Cut Taffazani Fithrian Nazla, Meri Selfia, Wilda Nur Fajri, Suci Muharrami, Sarbani Putri, Nur Afra Ramadhini, Sofia Zahara, Syarifah Ainul Bashirah untuk bantuan dan dukungan semangat dari awal hingga akhir.
- 14. Dan semua teman-teman yang telah mendukung dan membantu dalam penyelesaian Tugas Akhir ini.

Penulis menyadari terdapat banyak kekurangan dan keterbatasan dalam Tugas Akhir ini, oleh karena itu penulis mengharapkan kritik dan saran yang membangun dari semua pihak untuk pengembangan dan perbaikan proposal penelitian ini. Semoga Tugas Akhir ini dapat bermanfaat bagi perkembangan ilmu pengetahuan, khususnya dalam bidang pengelolaan lingkungan dan penanggulangan logam berat di Indonesia.

> Banda Aceh, 2 Agustus 2021 Penulis,

Rachmita Geubrina Raszky

DAFTAR ISI

	Hala	man
LE	MBAR PERSETUJUAN	i
LE	MBAR PENGESAHAN	ii
LE	MBAR PERNYATAAN KEASLIAN	iii
AB	STRAK	iv
AB	STRACT	v
KA	TA PENGANTAR	vi
DA	FTAR ISI	viii
DA	FTAR GAMBAR	х
DA	FTAR TABEL	xi
DA	FTAR LAMPIRAN	xii
DA	FTAR SINGKATAN DAN LAMBANG	xiii
BA	B I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tuiuan Penelitian	3
1.4	Manfaat Penelitian	4
1.5	Batasan Masalah	4
		-
BA	B II TINJAUAN PUSTAKA	5
2.1	Merkuri (Hg)	5
2.2	Nanopartikel NiFe ₂ O ₄	5
2.3	Metode Kopresipitasi	7
2.4	Fotokatalisis	8
2.5	X-Ray Diffraction (XRD)	10
2.6	Transmission Electron Microscopy (TEM)	12
2.7	Spektrofotometer UV-Vis	14
,		11
BA	B III METODE PENELITIAN	16
3.1	Tahan Penelitian A. R R. A. N. L. R. Y	16
3.2	Tempat dan Waktu Penelitian	17
3.3	Tahan Fabrikasi Nanomaterial NiFe2O4	17
	3.3.1 Bahan	17
	3.3.2 Tahap Fabrikasi	17
3.4	Karakterisasi Nanopartikel Ni Fe_2O_4	18
2.1	3.4.1 X-Ray Diffraction (XRD)	19
	3 4 2 Analisis Transmission Electron Microscopy (TEM)	19
3.5	Tahan Pengujian Aktivitas Fotokatalitik	20
2.0	3 5 1 Energi Gan NiFe ₂ O ₄ Diuji dengan Cara Sebagai berikut	20
	3 5 2 Penvianan Sampel IIii Fotokatalisis	$\frac{20}{20}$
		20

BAI	B IV HASIL DAN PEMBAHASAN	23
4.1	Hasil Penelitian Hasil Sintesis Nanopartikel NiFe ₂ O ₄	23
4.2	Hasil X-Ray Diffractometer (XRD)	31
	4.2.1 Ukuran Kristallit dan Parameter Kisi	24
4.3	Hasil Transmission Electron Microscopy (TEM)	24
4.4	Hasil Pengujian Spektrofotometer UV-Vis	25
	4.4.1. Hasil Energi Gap Nanopartikel NiFe ₂ O ₄	25
	4.4.2. Hasil Fotokatalisis	26
4.5	Hasil Sintesis Nanopartikel NiFe ₂ O ₄	27
4.6	Analisis X-Ray Diffractometer (XRD)	27
4.7	Analisis Transmission Electron Microscopy (TEM)	30
4.8	Analisis Spektrofotometer UV-Vis	30
DAI		25

DAD V : FENULUP	33
5.1 Kesimpulan	35
5.2 Saran	35
DAFTAR PUSTAKA	36
LAMPIRAN-LAMPIRAN	42

DAFTAR GAMBAR

HALAMAN

Gambar	2.1	Sampel Nanopartikel NiFe ₂ O ₄	7
Gambar	2.2	Aktivitas Fotokatalisis	9
Gambar	2.3	Ilustrasi Hukum Difraksi Bragg	11
Gambar	2.4	Transmission Electron Microscopy (TEM)	13
Gambar	2.5	Spektrofotometer UV-Vis	14
Gambar	3.1	Diagram Alur Penelitian	16
Gambar	3.2	X-Ray Diffractometer (XRD)	19
Gambar	4.1	Serbuk Nanopartikel NiFe ₂ O ₄ Hasil Sintesis Pada Suhu 90° C	23
Gambar	4.2	Spektrum XRD NiFe ₂ O ₄	24
Gambar	4.3	Hasil Transmission Electron Microscopy (TEM)	25
Gambar	4.4	Grafik Foton Energi Vs Absorbansi	25
Gambar	4.5	Kurva Kalibrasi Merkuri Hg	26
Gambar	4.6	Grafik Fotokatalisis	26

DAFTAR TABEL

HALAMAN

Tabel	2.1	Hasil Studi Aplikasi Nanopartikel Dalam Fotokatalisis	9
Tabel	3.1	Bahan Yang Digunakan	17
Tabel	4.1	Tabel Informasi Hasil Karakterisasi XRD Nanopartikel NiFe ₂ O ₄	24
Tabel	4.2	Presentasi Fotodegradasi	27

DAFTAR LAMPIRAN

HALAMAN

Lampiran	1. Perhitungan Persamaan Reaksi	42
Lampiran	2. Perhitungan Data XRD	43
Lampiran	3. Citra TEM	46
Lampiran	4. Perhitungan Pembuatan Larutan NiFe ₂ O ₄ dan HgCl ₂	47
Lampiran	5. Data Spektrofotometer UV-Vis	48
Lampiran	6. Data Tabel Perhitungan Persentasi Fotodegradasi	50
Lampiran	7. Dokumentasi Penelitian	51

DAFTAR SINGKATAN DAN LAMBANG

Singkatan/Lambang	Kepanjangan/Makna	Halaman
Hg	Merkuri	1
TiO ₂	Titanium Dioksida	3
Ag	Perak	3
NiFe ₂ O ₄	Nickel Ferrite	3
ССР	Cubic Close Packing	5
Zn ²⁺	Seng	5
Ni ²⁺	Nikel	5
Mg^{2+}	Magnesium	5
Co^{2+}	Cobalt	5
Mn ²⁺	Mangan	5
Ph	Power of Hydrogen	7
TDS	Total Dissolved Solids	7
HCL	Asam klorida	8
H ₂	Hidrogen	8
NH4OH	Amonium hidroksida	8
XRD	X-Ray Diffraction	9
TEM	Transmission Electron Microscopy	10
UV-VIS	Ultra Violet-Visible	11
NaOH	Natrium hidroksida	16
FeCl ₃ .6H ₂ O	Ferric chloride hexa-hydrate	16
NiCl ₂ .6H ₂ O	Nickel chloride hexa-hydrate,	16
HgCl ₂ . 6H ₂ O	Mercury chloride hexa-hydrate	16

BAB I PENDAHULUAN

1.1. Latar Belakang

Merkuri (Hg) merupakan unsur logam dalam bentuk cair yang memiliki titik beku sangat rendah dibanding unsur-unsur logam lain. Merkuri memiliki sifat yang mudah bercampur dengan logam lain menjadi logam campuran (alloy), dan mampu mengalirkan arus listrik tegangan tinggi maupun rendah (Putranto, 2011). Merkuri merupakan cairan yang berwarna putih keperakan dengan titik beku -39 °C dan titik didih 356,90 °C serta berat jenis 13,55 gr/cm³ dan berat atom 200,59 g/mol (Sudarmaji dkk., 2006). Penggunaan merkuri sangat luas antara lain dalam bidang industri kimia, pertambangan dan pertanian. Penggunaan merkuri paling besar yaitu pada pertambangan emas, logam merkuri digunakan untuk mengikat emas dari mineral pengikatnya (Muryani, 2019). Pada bidang pertanian merkuri digunakan sebagai bahan pembuatan anti fungi, selain itu merkuri juga bisa digunakan pada peralatan fisika seperti barometer dan termometer (Sulniawati dkk., 2017).

Merkuri juga memiliki dampak negatif terhadap lingkungan terutama pada manusia. Misalnya Bioakumulasi senyawa merkuri yang terkandung dalam air limbah tambang emas dapat ikut terbawa hingga dalam perairan. Selanjutnya, akumulasi senyawa organik dapat terjadi pada tubuh ikan yang terdapat di perairan tersebut, dan kemudian berpotensi masuk dalam tubuh manusia melalui rantai makanan (Ambarsari dan Qisthi, 2017). Lebih lanjut, dalam laporan Susanti (2013), bahaya merkuri disebutkan dapat menyebabkan retardasi mental, penurunan kognitif, dan penyakit lain terhadap perkembangan janin dan air susu ibu (ASI) pada ibu menyusui. Hal ini dikarenakan merkuri merupakan logam berat yang sangat beracun baik dalam bentuk unsur, gas, maupun garam merkuri organik. Uap merkuri juga dapat masuk ke dalam tubuh manusia melalui pernafasan dan dibawa ke otak melalui aliran darah dengan cara penetrasi pada sekat antara darah dan otak sehingga menyebabkan kerusakan pada sistem saraf pusat. Keberadaan ion Hg (II) dan senyawa metil merkuri (CH₃Hg⁺) di dalam tubuh manusia dapat masuk merusak organ ginjal dan kematian (Novi dkk., 2013). Berdasarkan Peraturan Menteri Kesehatan adapun kadar merkuri maksimum di dalam air yaitu sebesar 0,001 mg/L atau sekitar 1 (μ g/L) (Yulis, 2018).

Beberapa metode pengolahan limbah merkuri antara lain pengendapan, adsorpsi, dan fotoreduksi. Penanganan merkuri dengan metode pengendapan dan adsorpsi akan menghasilkan limbah padat endapan merkuri. Salah satu metode yang dapat mendeteksi ion merkuri adalah fotoreduksi (Putri dkk., 2015). Menurut Novi dkk. (2013), metode yang relatif baru namun dilaporkan cukup efektif untuk mengatasi limbah merkuri adalah metode fotoreduksi terkatalisis. Metode fotoreduksi tanpa fotokatalisis memiliki efisiensi yang rendah (Okoronkwo dkk., 2007), sehingga perlu untuk dikaji lebih jauh tentang fotoreduksi dengan menggunakan material fotokatalis atau lebih dikenal dengan metode fotokatalisis.

Metode Fotokatalisis adalah metode yang memanfaatkan cahaya matahari untuk mendegradasi cemaran limbah logam berat merkuri. Fotokatalisis merupakan substansi yang dapat mempercepat reaksi dengan memanfaatkan foton sebagai sumber energi pemicunya (Tussa'adah, 2015). Material yang sangat berperan sebagai fotokatalis adalah material semikonduktor. Ketika material semikonduktor disinari cahaya matahari, akan menghasilkan elektron dan hole, yang berperan sebagai agen oksidasi dan reduksi dalam reaksi fotokatalis (Aliah dan Karlina, 2015). Banyak penelitian menggunakan TiO₂ (titanium dioksida) sebagai material fotokatalitik (Abdullah dkk., 2011). Maka dari itu perlu dilakukan kajian ulang terhadap material lain sebagai aktivasi material fotokatalis, seperti menggunakan nanopartikel unsur tertentu untuk mengaktifkan material fotokatalis.

Penelitian nanoteknologi di bidang lingkungan khususnya penelitian penanggulangan pencemaran logam berat menaruh perhatian besar pada adsorben dan material fotonik berbasis nanopartikel. Azhar (2019) misalnya, telah melaporkan hasil investigasinya mengenai absorbansi limbah merkuri dengan melalui biosintesis nanopartikel perak (Ag) dengan memanfaatkan belimbing wuluh. Alasan menggunakan nanopartikel lebih murah dari sisi biaya, lebih efisien waktu, mudah diproduksi dan terbukti mampu menanggulangi pencemaran lingkungan (Muflihatun dan Suharyadi, 2015).

Salah satu nanopartikel yang sedang dikembangkan yaitu nanopartikel nickel ferrite NiFe₂O₄ yang merupakan material magnetik halus dengan ciri-ciri magnetik saturasi tinggi, koersivitas rendah, permeabilitas magnetik tinggi, anisotropi rendah, suhu Curie tinggi, dan magnetostriksi (magnetostriction) rendah (Srivatasva dkk., 2009; Jahanbin dkk., 2010, dan Marinca dkk., 2011). Nanopartikel NiFe₂O₄ juga memiliki afinitas dengan ion logam yang cukup dan memiliki sifat superparamagnetik yang menjadikannya lebih besar responsif terhadap medan magnet eksternal sehingga memudahkan dalam hasil proses pemisahan sedimen adsorpsi (Hermawan dkk., 2015). Berdasarkan laporan Sartika dkk. (2020), NiFe₂O₄ juga digunakan sebagai sebagai adsorben penghilang logam berat zinc, nickel, dan copper dari limbah sintetis. Sehingga akan dilakukan penelitian lebih lanjut terhadap nanopartikel NiFe $_2O_4$ dalam mendegradasi logam berat lainnya, seperti merkuri.

Berdasarkan latar belakang tersebut penulis tertarik untuk melakukan penelitian tentang potensi nanopartikel NiFe₂O₄ untuk mendegradasi limbah merkuri. Kebaruan dari penelitian ini adalah pada penggunaan nanopartikel NiFe₂O₄ yang disintesis pada suhu rendah dengan metode kopresipitasi. Prinsip kerja dari metode ini yaitu mengubah suatu garam logam menjadi endapan dengan menggunakan pengendap basa hidroksida atau karbonat yang kemudian diubah ke dalam bentuk oksidanya dengan cara pemanasan (Batubara, 2020). Alasan pemilihan metode ini adalah proses sintesisnya relatif cepat dan sederhana serta nanopartikel yang dihasilkan cenderung seragam.

1.2. Rumusan Masalah

Rumusan masalah dalam penelitian ini adalah sebagai berikut:

- 1. Bagaimana cara mensintesis nanopartikel *nickel ferrite* (NiFe₂O₄) dengan menggunakan metode kopresipitasi?
- 2. Bagaimana aktivitas fotodegradasi limbah merkuri berdasarkan variasi konsentrasi dan waktu penyinaran?

1.3. Tujuan Penelitian

Adapun tujuan dilakukannya penelitian ini adalah:

- Mendapatkan nanopartikel NiFe₂O₄ yang disintesis menggunakan metode kopresipitasi.
- 2. Menganalisis hasil persentasi fotodegradasi limbah merkuri berdasarkan variasi konsentrasi dan waktu penyinaran.

1.4. Manfaat Penelitian

Manfaat dari penelitian ini adalah:

- Memberikan informasi tentang aktivitas fotokatalitik nanopartikel NiFe₂O₄ terhadap logam berat merkuri (Hg).
- 2. Sebagai referensi awal untuk penelitian lanjutan terhadap pemurnian limbah logam berat menggunakan nanopartikel.

1.5. Batasan Masalah

Batasan masalah dari penelitian ini adalah:

- 1. Sintesis nanopartikel dengan metode kopresipitasi pada 90° C.
- Karakterisasi nanopartikel *nickel ferrite* (NiFe₂O₄) dengan XRD, TEM dan Spektrofotometer UV-Vis.
- 3. Proses degradasi Hg dengan metode fotokatalitik dengan variasi waktu penyinaran dan konsentrasi larutan Hg.

BAB II TINJAUAN PUSTAKA

2.1. Merkuri (Hg)

Merkuri dalam bahasa latin dikenal dengan nama hydrargyrum, dalam bahasa yunani di kenal hydra gyros atau liquid silver yang berarti cairan berwarna perak. Merkuri disingkat dengan Hg. Merkuri pada tabel periodik terdapat pada golongan XII D, periode VI, memiliki nomor atom 80 dengan berat atom 200,59 g/mol. Merkuri memiliki sifat – sifat sebagai berikut: Merkuri merupakan satu-satunya logam yang berbentuk cair pada suhu kamar (25°C) dan memiliki titik beku yang paling rendah dibanding logam lainnya, yaitu -39°C. Memiliki kisaran suhu yang luas untuk kondisi merkuri dalam bentuk cair, yaitu 396°C dan memiliki volatilitas yang tinggi dibanding logam lainnya. Merupakan konduktor yang baik karena memiliki ketahanan listrik yang rendah. Mudah dicampur dengan logam lain menjadi logam campuran yang disebut logam campuran (amalgam/alloy). Merkuri dan komponenkomponennya bersifat toksik terhadap semua makhluk hidup (Rangkuti, 2009).

Senyawa merkuri banyak dipakai dalam pembuatan amalgam, cat, baterai, komponen listrik, ekstraksi emas dan perak, gigi palsu, senyawa anti karat (anti fouling), serta fotografi dan elektronik. Pada industri kimia yang memproduksi gas klorin dan asam klorida juga menggunakan merkuri. Penggunaan merkuri dan komponen-komponennya juga sering dipakai sebagai pestisida (Rangkuti, 2009). Logam merkuri sering dipakai sebagai katalis dalam proses di industriindustri kimia terutama pada industri vinil klorida yang merupakan bahan dasar dari berbagai plastik (Fajriyah, 2019).

2.2. Nanopartikel NiFe₂O₄

Nanopartikel adalah suatu ukuran partikel yang berukuran 1-100 nm serta memiliki sifat fisik, kimia, mekanik, magnetik dan optik yang unik dan tidak dapat ditemui pada material lainnya. Menurut ukurannya yang tergolong sangat kecil, nanopartikel dapat dimanfaatkan dalam berbagai bidang, seperti bidang kesehatan, teknologi informasi, produksi dan penyimpanan energi, dalam ilmu

alam, bahan pangan dan lingkungan. Berdasarkan bentuk nanopartikel dapat berupa bola, batang, tabung serat, ataupun tidak memiliki bentuk yang beraturan (Elzey, 2010). Sintesis nanopartikel dapat dibagi menjadi dua pendekatan besar, yaitu: cara pertama yaitu dengan memecah partikel berukuran besar menjadi partikel berukuran nanometer. Pendekatan ini disebut pendekatan *top-down*. Pendekatan kedua yaitu *bottom*-up adalah dengan memulai dari atom-atom atau molekul-molekul atau kluster-kluster yang membentuk partikel berukuran nanometer yang dikehendaki (Abdullah, 2009).

Nanopartikel *Nickel Ferrite* (NiFe₂O₄) merupakan salah satu dari kelompok spinel ferit yang memiliki rumus senyawa MFe₂O₄, dimana M adalah kation-kation divalen dari unsur-unsur transisi 3d (M^{2+} : Ni²⁺, Mg²⁺, Zn²⁺, Co²⁺, Mn²⁺). Struktur kristal ini memiliki sel satuan yang terdiri dari 32 atom oksigen dalam susunan *cubic close packing* (CCP) dan kation-kation yang terdistribusi dalam 8 ruang subkisi tetrahedral serta 16 ruang subkisi oktahedral. Distribusi kation divalen dan trivalen (M^{3+}) dalam kedua subruang ini sangat berpengaruh terhadap sifat-sifat magnetik nanopartikel karena berkaitan dengan distribusi momen magnetik material. Nanopartikel NiFe₂O₄ merupakan material magnetik halus dengan ciri-ciri magnetik saturasi tinggi, koersivitas rendah, permeabilitas magnetik tinggi, anisotropi rendah, suhu Curie tinggi, dan magnetostriksi (*magnetostriction*) rendah (Srivatasva dkk., 2009; Jahanbin dkk., 2010, dan Marinca dkk., 2011).

Nanopartikel NiFe₂O₄ memiliki sifat ferrimagnetik yang berasal dari pasangan momen magnet *anti-paralel* antara momen magnet ion Fe³⁺ pada posisi tetrahedral dengan momen magnet ion Ni²⁺ dan ion Fe³⁺ pada posisi oktahedral. Karena sifat ini, *spinel* Nanopartikel NiFe₂O₄ banyak diaplikasikan dalam berbagai bidang teknologi, seperti perangkat fotolistrik, katalisis, sensor, perangkat nano, perangkat *microwave* dan pigmen magnetik. Nanopartikel NiFe₂O₄ merupakan salah satu bahan ferit lunak yang bersifat feromagnetik khas dimana konduktivitas rendah dan kerugian arus eddy sedemikian rendah, stabilitas elektrokimia tinggi, perilaku katalitik serta banyak tersedia di alam (Mashadi dkk., 2016). Banyak metode yang telah dikembangkan untuk mensintesis nanopartikel NiFe₂O₄ seperti *combustion method*, metode

kopresipitasi, *sol-gel auto combustion method* dan metode hidrotermal (Muflihatun dan Suharyadi, 2015).

Gambar 2.1. Sampel Nanopartikel NiFe₂O₄ (*Sumber: Google*)

2.3. Metode Kopresipitasi

Penelitian ini menggunakan metode kopresipitasi untuk membuat nanopartikel NiFe₂O₄. Metode kopresipitasi merupakan kontaminasi endapan oleh zat lain yang larut dalam pelarut. Misalnya bila ditambahkan asam sulfat ke dalam suatu larutan barium klorida yang mengandung sedikit ion nitrat, ternyata endapan barium sulfat itu mengandung barium nitrat. Metode kopresipitasi juga merupakan metode yang menjanjikan karena prosedurnya yang relatif sederhana dan menghasilkan distribusi ukuran butir yang yang relatif sempit. Selain itu dengan menggunakan metode ini, struktur kristal dan sifat magnetik dari sampel yang disintesis dapat dioptimalkan dengan mengontrol parameter-parameter sintesis seperti suhu, bahan pelarut, pH larutan, kecepatan pengadukan, lama pengadukan konsentrasi garam logam, konsentrasi kopresipitasi dan konsentrasi surfaktan (Salavati dkk., 2009; Kadi dan Mohamed, 2014; Muflihatun dan Suharyadi., 2015).

Padatan yang dihasilkan dari metode kopresipitasi stabil dan tidak dapat larut dalam pelarut. Proses kopresipitasi melibatkan kation logam dari medium tertentu diendapkan secara bersama dalam bentuk hidroksida, karbonat, oksalat, atau sitrat. Endapan dikalsinasi pada temperatur tertentu sehingga menghasilkan produk dalam bentuk bubuk. Proses kopresipitasi juga melibatkan kontrol konsentrasi pelarut dan pengendap, temperatur, kecepatan pengadukan dalam pembuatan produk (Ningsih, 2016). Menurut Batubara. (2020) kopresipitasi merupakan salah satu metode yang digunakan dalam membuat preparasi material nanopartikel. Prinsip kerja dari metode ini yaitu dengan mengubah suatu garam logam menjadi endapan dengan menggunakan pengendap basa hidroksida atau karbonat yang kemudian diubah ke bentuk oksidanya dengan cara pemanasan. Metode kopresipitasi merupakan metode yang paling efektif karena metode ini dapat dilakukan pada kondisi lingkungan yang normal. Dalam sintesisnya metode ini menggunakan pasangan asam dan basa. Asam berfungsi sebagai pelarut dan basa membawa zat terlarut ke bawah sehingga terbentuk endapan yang dikehendaki.

Metode kopresipitasi menggunakan larutan asam untuk melarutkan bahan utama yang dimana penggunaan asam sebagai pelarut karena logam besi dapat bereaksi cepat dengan HCL yang membentuk besi (II) dan gas H₂. Larutan yang sudah diaduk sampai homogen perlu ditambahkan larutan pengendap yaitu NH4OH sehingga endapannya mempunyai homogenitas yang tinggi. Penggunaan NH4OH yang mengotori endapan dapat dihilangkan dengan jalan pemanasan (Merdekani, 2013). Hasil endapan yang terbentuk dipengaruhi oleh konsentrasi pelarut dan pengendap, suhu pemanasan, serta durasi pengadukan. Penggunaan metode kopresipitasi dengan variasi konsentrasi larutan logam besi dan larutan pengendap mempengaruhi jumlah serbuk dan sifat magnetik dari magnetit yang terbentuk (Batubara, 2020).

2.4. Fotokatalisis

Fotokatalis adalah reaksi kimia yang berjalan dengan bantuan katalis dan katalis tersebut aktif ketika disinari cahaya matahari. Prinsip kerja fotokatalis yaitu proses fotokimia yang dikombinasikan dengan katalis terintegrasi untuk melakukan suatu reaksi transformasi kimia. Transformasi kimia tersebut terjadi pada permukaan bahan katalis semikonduktor yang melibatkan cahaya yang berasal dari foton dengan energi tertentu. Sehingga dengan kata lain proses fotokatalis dapat menguraikan senyawa dengan bantuan cahaya. Mekanisme dasar dari proses tersebut adalah terbentuknya pasangan *electron-hole* pada permukaan katalis semikonduktor ketika terinduksi oleh energi foton yang sesuai (Aliah dan Karlina, 2015).

Gambar 2.2. Aktivitas Fotokatalisis (Zaleska, 2008)

Material fotokatalis yang banyak menjadi fokus riset para peneliti dunia adalah Titanium Dioksida (TiO₂). TiO₂ merupakan senyawa dioksida berwarna putih yang tahan karat dan tidak beracun dan juga merupakan salah satu katalis yang paling stabil, paling sering digunakan dibandingkan dengan katalis lainnya (Abdullah, 2009). Untuk mengaktifkan katalis TiO₂ dibutuhkan energi foton dengan panjang gelombang yang kecil. Material fotokatalis TiO₂ telah terbukti dapat mengurangi nilai pH dari 10,09 menjadi 9,06 dan nilai TDS air limbah dari 1191 mg/L menjadi 409 mg/L air pada sampel dengan waktu tahan selama 0 jam (Tussa'adah, 2015). Hasil studi aplikasi nanopartikel dalam fotokatalisis ditunjukkan dalam Tabel 2.1.

No	Nanopartikel	Ukuran	Limbah	Penulis
1.	CoFe ₂ O ₄ (<i>Cobalt</i> <i>Ferrite</i>)	A R - R 27,8204 nm	ANIRY Metilen Biru	Suaib,S dkk., (2019).
2.	Fe ₃ O ₄ (Oksida Besi Magnetit)	14,33 nm	Logam Pb (Timbal)	D. Sartika dkk., (2019).
3.	TiO ₂ (Titanium Dioksida)	59,09 nm	Limbah Tekstil	Risda, T dan Astuti (2015).
4.	ZnO (Zinc Oxide)	Nanopartikel	Metilen Biru	Aprilia, A dkk., (2020).
5.	TiO ₂ (Titanium Dioksida)	Nanopartikel	Pengolahan Air	Febri Ulfa Fitriana
6.	TiO ₂	Nanopartikel	Degradasi Bahan	Jayadi, F.S dkk., (2014).

Tabel 2.1. Hasil Studi Aplikasi Nanopartikel dalam Fotokatalisis

	(Titanium		Organik Air	
	Dioksida)		Gambut	
7.	Fe ₂ O ₃ (Besi Oksida)	Nanopartikel	Metilen Biru	Rahmawati, F (2019).
8.	ZnFe ₂ O ₄ (Zink Ferrite)	Nanopartikel	Rhodamine B	Nurhasanah, I dkk., (2018).
9.	ZnO (Zinc Oxide)	Nanopartikel	Surfaktan Sodium Lauryl Sulfat	Maretta, A dan Helmi, Q (2015).
10.	MgFe ₂ O ₄ (<i>Magnesium</i> <i>Ferrite</i>)	Nanopartikel	Metilen Biru	Tursina, N (2021).
11.	CuAl2O4 (Copper Oxide)	Nanopartikel	Metilen Biru	Nurdiana,D (2020).
12.	MgFe ₂ O ₄ (Magnesium Ferrite)	0,2 nm	Merkuri	Putra, R.A dkk., (2018).
13.	ZnFe ₂ O ₄ (Zink Ferrite)/ NiFe ₂ O ₄ (Nickel Ferrite)	Nanopartikel	Rhodamine B dan Metilen Biru	Fikran, A (2016).
14.	SnO ₂ (Oksida Timah)	Nanopartikel	R <mark>ho</mark> damine B	Agustian, H.L.K.P.J (2017).
15.	Fe ₃ O ₄ (Oksida Besi Magnetit)/ SiO ₂ (Silikon Dioksida)/ TiO ₂ (Titanium Dioksida)	Nanopartikel	Nitrobenzena	Maulidi, K (2019).

2.5. X-Ray Diffraction (XRD)

Difraksi sinar-x pertama kali dieksperimenkan pada tahun 1912 oleh Friedercih, Knipping dan Von Laue, sehingga menjadi salah satu metode karakterisasi material yang paling tua dan paling sering digunakan hingga sekarang. Sinar-x digunakan untuk menghasilkan pola difraksi tertentu yang dapat digunakan dalam analisis kualitatif dan kuantitatif material. Pada waktu suatu material dikenai sinar-x, maka intensitas sinar yang ditransmisikan lebih rendah dari intensitas sinar datang. Hal ini disebabkan adanya penyerapan oleh material dan juga penghamburan oleh atom-atom dalam material tersebut. Berkas sinar-x yang dihamburkan tersebut ada yang saling menghilangkan karena fasanya berbeda dan ada juga yang saling menguatkan karena fasanya sama. Berkas sinar -x yang saling menguatkan itulah yang disebut sebagai berkas difraksi (Putra, 2016). Hukum Bragg merupakan rumusan matematika tentang persyaratan yang harus dipenuhi agar berkas sinar -x yang dihamburkan tersebut merupakan berkas difraksi. Sinar -x dihasilkan dari tumbukan antara elektron kecepatan 3 tinggi dengan logam target. Dari prinsip dasar ini, maka dibuatlah berbagai jenis alat yang memanfaatkan prinsip dari hukum Bragg (Abdullah, 2009).

Menurut Suharyana. (2012) teknik ini digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel. Dasar dari penggunaan difraksi sinar-x untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg:

$$2d\sin\theta = n\lambda \tag{2.1}$$

Dengan *d* adalah jarak antar bidang dalam kristal, θ adalah sudut deviasi, *n* adalah orde (0, 1, 2, 3,..) dan λ adalah panjang gelombang.

Gambar 2.3. Ilustrasi hukum difraksi Bragg (Sumber: Suharyana, 2012)

Alat ini memiliki tiga komponen utama yakni sumber sinar-x, material uji dan detektor sinar-x. Komponen pertama, yaitu sumber sinar-x terdapat dalam tabung sinar-x dimana di dalamnya akan terjadi tumbukan antara tegangan tinggi untuk mempercepat elektron dengan logam target sehingga menghasilkan sinar-x dengan panjang gelombang 0,1 sampai 100 x 10^{-10} m. Sedangkan pada komponen kedua, yaitu material yang akan diujikan dalam bentuk padatan halus

(bubuk) dan untuk komponen ketiga yaitu, detektor sinar-x sebagai pendeteksi sudut sinar-x yang direfleksikan pada material uji (Krisnawan,2009).

Menurut Manurung (2013) analisis XRD adalah suatu analisis yang dilakukan secara kualitatif yang berdasarkan pada pola difraksi sinar-x pada sampel yang dianalisis. Hasil analisisnya dilakukan pencocokan dengan kehadiran suatu fasa dalam suatu sampel analisis. Metode yang secara umum digunakan adalah metode pencocokan (*search match analysis*) dengan menggunakan program PCPDFWIN 1997. Berdasarkan dengan prosedur pencocokan yang baku akan memperoleh lembaran data yang paling cocok dengan sampel yaitu PDF (*powder diffraction files*). Dalam lembaran tersebut jarak Δd atau selisih jarak antar bidang *d*, antara data XRD sampel dengan data XRD standar adalah kurang dari 0,03 Å.

2.6. Transmission Electron Microscopy (TEM)

TEM merupakan alat yang digunakan untuk menentukan ukuran partikel dengan resolusinya yang sangat tinggi. Teknik analisa yang digunakan untuk mempelajari morfologi, struktur, dan berbagai macam bentuk termasuk butiran, fasa, fasa terlekat, partikel terlekat. Selain itu TEM juga digunakan untuk mengamati detail struktur internal sel. Karakterisasi dengan menggunakan TEM juga dapat digunakan untuk menentukan ukuran partikel dan distribusinya. Penggunaan *high resolution* TEM (HR-TEM) juga dapat menentukan lokasi atom-atom dalam sampel. (Abdullah dan Khairurrijal, 2009; Rahma, 2019).

TEM pada dasarnya merupakan spektroskopi elektron yang akan menghasilkan sinyal tertentu jika bahan dikenai oleh arus elektron berenergi tinggi. TEM memiliki cara kerja yang sama seperti cara kerja proyektor slide, dimana elektron ditembakkan ke dalam objek pengamatan dan pengamat mengamati hasil tembusannya pada layar.

Gambar 2.4. TEM (Sumber: Arsip Penulis)

Prinsip kerja TEM yaitu menembakkan elektron ke lapisan tipis sampel sehingga informasi tentang komposisi struktur dalam sampel tersebut dapat terdeteksi dari analisis sifat tumbukan, pantulan maupun fase sinar elektron yang menembus lapisan tipis tersebut. Berdasarkan sifat pantulan sinar elektron tersebut juga bisa diketahui struktur kristal maupun arah dari struktur kristal tersebut. Bahkan dari analisa lebih detail, dapat diketahui deretan struktur atom dan ada tidaknya yang cacat (*defect*) pada struktur tersebut. Agar dapat mentransmisikan berkas elektron, sampel yang digunakan harus sangat tipis (~100-500 nm) (Liani dkk., 2014; Karlik, 2001).

Sampel biasanya ditempatkan di atas grid TEM yang terbuat dari tembaga atau karbon. Adapun sampel yang berbentuk partikel akan didispersi di dalam zat cair yang mudah menguap seperti etanol lalu diteteskan ke atas grid TEM. Sedangkan jika sampel berupa komposit partikel di dalam material lunak seperti polimer, komposit tersebut harus diiris tipis (beberapa nanometer). Alat pengiris yang digunakan adalah *microtom* (Abdullah dan Khairurrijal, 2009).

2.7. Spektrofotometer UV-Vis

Spektroskopi adalah suatu studi tentang interaksi cahaya antara atom dan molekul. Spektroskopi UV-Vis merupakan salah satu spektroskopi optik yang digunakan untuk mengamati karakteristik absorbansi material pada panjang gelombang 200 nm hingga 700 nm. Secara khusus dapat mendeteksi transisi dari molekul karena prosesnya yang menyerap cahaya dengan energi yang sesuai dengan energi dalam molekul. Absorbansi di panjang gelombang tertentu dapat menunjukkan karakter tertentu dari suatu senyawa atau partikel. (Underwood, 2002; Yuliah dan Suryaningsih, 2016; Yulianti, 2010).

(Sumber: Google)

Spektrofotometer UV-Vis menggunakan gelombang elektromagnetik pada daerah ultraviolet (UV) dengan panjang gelombang 200 nm - 400 nm dan sinar tampak (*Visible*) dengan panjang gelombang 400 nm - 750 nm. Diagram spektrofotometer terdiri dari sumber cahaya polikromatis, monokromator, sampel, dan detektor. Sumber radiasi berupa sinar UV dan sinar tampak. Monokromator adalah alat optik yang dapat mengubah radiasi polikromatik menjadi monokromatik. Detektor yang digunakan yaitu detektor fotolistrik. Sampel yang akan diuji dimasukkan ke dalam kuvet yang berfungsi sebagai tempat sampel. Kuvet yang terbuat dari kuarsa silika memiliki kualitas lebih baik, hal tersebut disebabkan karena kaca dan plastik dapat menyerap UV (Owen, 2010).

Pinsip kerja dari spektrofotometer UV-Vis adalah sumber radiasi yang berasal dari sinar polikromatik didispersikan menjadi sinar monokromatik yang

kemudian dikenakan pada sampel dimana sinar transmisinya terdeteksi oleh detektor. Hasil dari detektor berupa data absorbansi cahaya yang diserap oleh sampel pada panjang gelombang tertentu, yaitu menunjukkan karakter dari suatu partikel atau senyawa. Nilai absorbansi menunjukkan jumlah partikel yang terbentuk. Semakin besar ukuran partikel maka semakin besar panjang gelombang yang terserap. Hal ini disebabkan karena partikel yang lebih besar memiliki atom lebih banyak sehingga mampu menyerap panjang gelombang dari sumber cahaya (Octavia, 2014).

Data yang dihasilkan dari spektroskopi UV-Vis disajikan dalam fungsi frekuensi atau panjang gelombang (Abdullah, 2009). Dalam analisis struktur, senyawa yang mengandung jumlah ikatan tunggal akan tereksitasi pada pada panjang gelombang 150 nm. Hal ini menyebabkan tidak dapat terukur dengan spektrofotometer UV-Vis. Sedangkan senyawa yang memiliki ikatan rangkap dan memiliki elektron bebas yang lebih tinggi akan mudah tereksitasi dan menyerap panjang gelombang yang lebih tinggi sehingga terdeteksi dengan spektrofotometer UV-Vis (Dahlan dkk, 2013).

BAB III

METODOLOGI PENELITIAN

3.1. Tahapan Penelitian

Tahapan dan diagram alur penelitian ini ditunjukkan pada Gambar 3.1. Tahapan penelitian secara umum dibagi dalam dua tahapan dasar yaitu, tahap fabrikasi nanomaterial NiFe₂O₄ dan tahap pengujian aktivitas fotokatalitik. Selain itu, dilakukan uji analisis karakterisasi sampel yang meliputi karakterisasi morfologi dan ukuran butir, struktur kristal, ikatan atomik serta sifat optik berturut-turut menggunakan *X-ray Diffractometer* (XRD), *Transmission Electron Microscopy* (TEM) dan Spektrofotometer UV-Vis.

Gambar 3.1. Diagram Alur Penelitian.

3.2. Tempat dan Waktu Penelitian

Fabrikasi NiFe₂O₄ dilakukan di UPT Laboratorium Dasar Universitas Samudera. Uji fotokatalisis di UPT Laboratorium Dasar Universitas Samudera. Pengukuran TEM dilakukan di Laboratorium LIPI Jakarta. Pengukuran Spektrofotometer UV-Vis di UPT Laboratorium Dasar Universitas Samudera. Analisis XRD dilakukan di Laboratorium LIPI Jakarta. Dilaksanakan pada bulan Oktober 2020 sampai dengan bulan Juni 2021.

3.3. Tahap Fabrikasi Nanomaterial NiFe₂O₄

3.3.1. Bahan

Bahan yang digunakan untuk membuat nanopartikel NiFe $_2O_4$ ditunjukkan dalam Tabel 3.1.

No	Item	Spesifikasi	Vol	Satuan	Peruntukan
1	FeCl ₃ .6H ₂ O (<i>ferric chloride</i> <i>hexa-hydrate</i> , Mr = 270,6 g/mol),	Prekursor (Pure Analis)	0,5	Molar	Bahan sintesis
2	NiCl ₂ .6H ₂ O (<i>Nickel</i> <i>chloride hexa-hydrate</i> , Mr = 237.66 g/mol), <i>Merck</i> KGaA Made in Germany	Prekursor (Pure Analis)	0,5	Molar	Bahan sintesis
3	NaOH (<i>sodium hydroxide</i> , Mr = 40 g/mol)	Pure Analis	10	Molar	Bahan sintesis
4	Larutan HCl (<i>chloride acid</i> , Mr = 36,46 g/mol, 37 %), dan	37% (analis)	3,3	Ml	Bahan katalis
5	HgCl ₂ . 6H ₂ O	Prekursor (Pure Analis)			Bahan penguji
6	Akuades	Analis	10	Liter	Bahan sintesis dan pencucian

Tabel 3.1. Bahan yang digunakan

3.3.2. Tahap Fabrikasi

Nanopartikel NiFe₂O₄ disintesis dengan metode kopresipitasi. Prekursor yang digunakan adalah NiCl₂.6H₂O, FeCl₃.6H₂O, HCl, dan NaOH (Merk. Emsure). Proses kopresipitasi diawali dengan:

 Prekursor FeCl₃.6H₂O sebanyak 10,824 gram dilarutkan ke dalam 20 ml akuades yang diaduk menggunakan *magnetic stirrer* pada suhu ruang selama 2 menit atau hingga larutan menjadi homogen.

- Prekursor NiCl₂.6H₂O sebanyak 4,7532 gram dilarutkan ke dalam 20 ml akuades yang diaduk menggunakan *magnetic stirrer* pada suhu ruang selama 2 menit atau hingga larutan menjadi homogen.
- Selanjutnya mencampurkan larutan NiCl₂.6H₂O dan larutan FeCl₃.6H₂O lalu ditambahkan HCl sebanyak 3,37 ml untuk mempercepat reaksi dan diaduk menggunakan *magnetic stirrer* dengan laju pengadukan 500 rpm pada suhu ruang selama 5 menit.
- Persiapkan larutan NaOH dengan cara melarutkan 16 gram NaOH ke dalam 40 ml akuades sambil diaduk dengan menggunakan *magnetic stirrer* pada suhu 90°C di atas *hotplate*.
- 5. Ketika Larutan NaOH sudah terbentuk maka dilakukanlah proses presipitasinya dengan cara meneteskan larutan campuran tadi secara konstan (laju penetesan ±1,5 ml/menit) menggunakan buret ke larutan NaOH yang sedang di-*stirrer* pada suhu 90°C dengan laju pengadukan 1000 rpm selama 60 menit.
- 6. Lalu matikan *hotplate* kemudian presipitat diendapkan selama 30 menit sampai temperaturnya setimbang dengan suhu ruang,
- 7. Lalu presipitat dibilas dengan 150 ml akuades sebanyak 6 kali pengulangan dan diendapkan kembali di atas magnet permanen selama 30 menit.
- Endapan basah (*slurry*) nanopartikel lalu dipanaskan dalam *furnace* pada suhu 90°C selama 4 jam. Pemanasan akan menghasilkan kepingan-kepingan padat kumpulan nanopartikel NiFe₂O₄.
- 9. Kepingan tersebut digerus sampai menjadi serbuk. A R - R A N I R Y

3.4. Karakterisasi Nanopartikel NiFe2O4

Untuk mengetahui karakteristik struktur kristal, ukuran butir, morfologi dan sifat optik dari nanopartikel NiFe₂O₄ dapat dilakukan teknik pengukuran seperti:

3.4.1. X-Ray Diffractometer (XRD)

 Diambil sampel nanopartikel NiFe₂O₄ yang telah berbentuk bubuk dengan volume satu sendok teh, kemudian dimasukkan ke dalam plat alumunium berukuran 2x2 cm.

- Lalu plat alumunium yang berisi sampel dikarakteristik menggunakan XRD-7000 SHIMADZU dengan sumber Cu-Kα1, yang memiliki panjang gelombang 1,5406 A⁰. Kemudian mengatur besarnya tegangan dan arus yang akan digunakan.
- Selanjutnya pengambilan data fraksi yang dilakukan dalam rentang sudut difraksi 2θ dengan kecepatan baca waktu per detik.
- Menembakkan sinar-x menuju sampel nanopartikel NiFe₂O₄, sehingga akan membuat detektor berputar sesuai dengan rentang sudut difraksi 2θ yang digunakan. Kemudian setelah ditembakkan maka nilai terbaca pada layar komputer grafik difraktogram yaitu grafik hubungan intensitas dengan 2θ.
- 5. Menginterpretasi grafik dengan menggunakan bantuan *Software Origin* yang dapat memberikan informasi tentang struktur kristal yang terdapat pada sampel nanopartikel NiFe₂O₄ (Syam, 2017).

Gambar 3.2. X-Ray Diffractometer (XRD)

3.4.2. Analisis Transmission Electron Microscopy (TEM)

TEM pada dasarnya merupakan spektroskopi elektron yang akan menghasilkan sinyal tertentu jika bahan dikenai oleh arus elektron berenergi tinggi. Berkas elektron tersebut kemudian difokuskan menggunakan lensa kondensor untuk menuju sampel. Ketika berkas elektron mengenai sampel nanopartikel NiFe₂O₄, maka berkas tersebut akan ada yang diserap maupun ditransmisikan. Berkas elektron yang ditansmisikan inilah yang digunakan dalam karakterisasi TEM. Setelah mengenai sampel, berkas elektron yang muncul akibat transmisi difokuskan pada lensa objektif serta melalui lensa *intermediate* dan lensa proyektil hingga akhirnya menghasilkan gambar secara skematis (Liani dkk., 2014).

3.5. Tahap Pengujian Aktivitas Fotokatalitik

3.5.1. Energi Gap NiFe₂O₄ Diuji dengan Cara Sebagai Berikut:

- Disiapkan serbuk NiFe₂O₄ sebanyak 0.01 gram yang dilarutkan dalam 1000 ml akuades.
- 2. Diaduk dengan *magnetic strirrer* \pm 3 menit hingga homogen pada suhu ruang.
- 3. Larutan NiFe₂O₄ selanjutnya dikarakterisasi dengan spektrofotometer UV-Vis sebagai acuan penentuan besarnya energi gap dari material itu sendiri berdasarkan nilai absorbansi.

3.5.1.1. Penentuan Kurva Kalibrasi Limbah Hg

- a. Proses pembuatan larutan induk Hg dengan konsentrasi sebesar 200 ppm.
- b. Dilakukan pengenceran untuk mendapatkan beberapa konsentrasi turunan dengan empat variasi konsentrasi yaitu 5 ppm, 10 ppm, 15 ppm, dan 20 ppm.
- c. Dilakukan pengukuran nilai absorbansi dari konsentrasi masing-masing sampel dari limbah Hg.
- d. Ditentukan grafik linearitas berdasarkan panjang gelombang maksimum terhadap absorbansi ke seluruh sampel limbah Hg.
- e. Ditentukan nilai konsentrasi limbah Hg yang akan digunakan untuk proses fotodegradasi. Pada penelitian ini settingan limbah yang diambil sebesar 5 ppm sebagai variasi konsentrasi terkecil limbah dan 20 ppm sebagai variasi terbesar dari dari limbah Hg yang dibuat.
- f. Tentukan panjang gelombang pada absorbansi maksimum pada sampel limbah Hg 5 ppm dan panjang gelombang pada absorbansi maksimum untuk sampel 20 ppm. Sebagai dasar acuan panjang gelombang pengukuran absorbansi disetiap limbah.

3.5.2. Penyiapan Sampel Uji Fotokatalisis

3.5.2.1. Preparasi Sampel Larutan Limbah Hg 5 ppm

a. Disiapkan gelas ukur berukuran 50 ml sebanyak 6 buah.

- b. Larutan limbah Hg dengan konsentrasi 5 ppm dimasukkan ke dalam masing-masing gelas ukur yang telah disiapkan tadi sebanyak 50 ml. Pada proses ini belum melibatkan material nanopartikel NiFe₂O₄.
- c. Dilakukan penyinaran di bawah lampu UV dengan daya 20 watt.
- d. Variasikan lamanya waktu penyinaran atau waktu kontak sinar UV dengan larutan limbah Hg dengan waktu variasi 0, 30, 60, 90, 120, dan 150 menit.
- e. Masing-masing larutan yang telah disinari UV diambil sebanyak 5 ml dimasukkan ke dalam kuvet dengan menggunakan pipet tetes untuk dilakukan pengukuran absorbansi pada panjang gelombang 200 sampai dengan 800 nm (disesuaikan operator).
- f. Data yang diperoleh berupa absorbansi terhadap panjang gelombang.

3.5.2.2. Preparasi Sampel Larutan Limbah Hg 5 ppm dengan Melibatkan Nanopartikel NiFe₂O₄

- a. Disiapkan serbuk nanopartikel NiFe₂O₄ sebanyak 0,5 gram.
- Disiapkan larutan limbah Hg dengan konsentrasi 5 ppm sebanyak 50 ml ke dalam masing-masing 5 buah gelas ukur volume 50 ml.
- c. Ditambahkan sebanyak 0,1 gram serbuk nanopartikel NiFe $_2O_4$ ke dalam masing–masing larutan limbah.
- d. Diaduk larutan yang telah ditambahkan nanopartikel NiFe₂O₄ menggunakan magnetic stirrer pada suhu ruang selama proses penyinaran dibawah lampu UV dengan daya 20 watt dan lamanya waktu kontak penyinaran dari 30, 60, 90, 120, 150 menit
- e. Setelah proses penyinaran diamkan larutan sampai aliran putaran limbah Hg berhenti.
- f. Diambil masing-masing sampel dengan menggunakan pipet tetes sebanyak 5 ml lalu dimasukkan ke dalam kuvet spektrofotometer UV-Vis untuk dilakukan pengukuran absorbansi dengan panjang gelombang 200 sampai 800 nm (disesuaikan operator).

3.5.2.3. Preparasi Sampel Larutan Limbah Hg 20 ppm

a. Disiapkan gelas ukur berukuran 50 ml sebanyak 6 buah.

- b. Larutan limbah Hg dengan konsentrasi 20 ppm dimasukkan ke dalam masing-masing gelas ukur yang telah disiapkan tadi sebanyak 50 ml. Pada proses ini belum melibatkan material nanopartikel NiFe₂O₄.
- c. Dilakukan penyinaran di bawah lampu UV dengan daya 20 watt.
- d. Variasikan lamanya waktu penyinaran atau waktu kontak sinar UV dengan larutan limbah Hg dengan waktu variasi 0, 30, 60, 90, 120, dan 150 menit.
- e. Masing-masing larutan yang telah disinari UV diambil sebanyak 5 ml dimasukkan ke dalam kuvet dengan menggunakan pipet tetes untuk dilakukan pengukuran absorbansi pada panjang gelombang 200 sampai dengan 800 nm (disesuaikan operator).
- f. Data yang beroleh berupa absorbansi terhadap panjang gelombang.

3.5.2.4. Preparasi Sampel Larutan Limbah Hg 20 ppm dengan Melibatkan Nanopartikel NiFe₂O₄

- a. Disiapkan serbuk nanopartikel NiFe₂O₄ sebanyak 0,5 gram.
- b. Disiapkan larutan limbah Hg dengan konsentrasi 20 ppm sebanyak 50 ml ke dalam masing-masing 5 buah gelas ukur volume 50 ml.
- c. Ditambahkan sebanyak 0,1 gram serbuk nanopartikel NiFe $_2O_4$ ke dalam masing-masing larutan limbah.
- d. Diaduk larutan yang telah ditambahkan nanopartikel NiFe₂O₄ menggunakan magnetic stirrer pada suhu ruang selama proses penyinaran dibawah lampu UV dengan daya 20 watt dan lamanya waktu kontak penyinaran dari 30, 60, 90, 120, 150 menit.
- e. Setelah proses penyinaran selesai, diamkan larutan sampai aliran putaran limbah Hg berhenti.
- f. Diambil masing-masing sampel dengan menggunakan pipet tetes sebanyak
 5 ml lalu dimasukkan ke dalam kuvet Spektrofotometer UV-Vis untuk dilakukan pengukuran absorbansi dengan panjang gelombang 200 sampai 800 nm (disesuaikan operator).
- g. Data yang beroleh berupa absorbansi terhadap panjang gelombang.

BAB IV HASIL DAN PEMBAHASAN

4.1. Hasil Sintesis Nanopartikel Nickel Ferrite (NiFe₂O₄)

Serbuk dari nanopartikel *Nickel Ferrite* (NiFe₂O₄) hasil sintesis ditampilkan pada gambar sebagai berikut:

4.2. Hasil X-Ray Diffractometer (XRD)

Hasil analisis XRD disajikan dalam difraktogram dalam Gambar 4.2. Berdasarkan hasil analisis terdapat empat *peak* yaitu (220), (311), (400) dan (331) yang mengindikasikan material yang dianalisis adalah NiFe₂O₄ yang bersifat polikristalin.

Gambar 4.2. Spektrum XRD NiFe₂O₄

4.2.1. Ukuran Kristallit dan Parameter Kisi

Informasi parameter kisi, ukuran kristallit, FWHM, dapat dilihat pada tabel 4.1. berikut:

Bidang HKL	20	cos θ	λ (Å)	K	FWHM	t (nm)	$\pm \Delta t$	a(Å)	$\pm \Delta a$	strain
220	30.39	0.97	1.5406	0.9	0.22	37.42	0.23	8.31	0.20	0.39
311	35.61	0.95	1.5406	0.9	0.22	37.93	0.18	8.36	0.13	0.12
400	43.3	0.93	1.5406	0.9	0.22	38.85	0.20	8.36	0.20	0.61
331	47.7	0.91	1.5406	0.9	0.22	39.48	0.23	8.31	0.11	0.06

Tabel 4.1. Tabel informasi hasil karakterisasi XRD Nanopartikel NiFe₂O₄

4.3. Hasil Transmission Electron Microscopy (TEM)

Analisis TEM telah dilakukan dan menghasilkan *image* seperti yang disajikan pada gambar 4.3. berikut:

Gambar 4.3. Hasil Karakterisasi TEM

4.4. Hasil Pengujian Spektrofotometer UV-Vis

4.4.1. Hasil Energi Gap Nanopartikel NiFe₂O₄

Hasil dari Gambar 4.4. menunjukkan informasi berupa lebar celah pita energi (*band gap*) sebesar 3,17 eV.

Gambar 4.4. Grafik Foton Energi Vs Absorbansi

4.4.2. Hasil Fotokatalisis

Grafik kurva kalibrasi limbah merkuri dengan variasi konsentrasi 5 ppm, 10 ppm, 15 ppm, dan 20 ppm ditampilkan pada gambar 4.5 berikut:

Gambar 4.5. Kurva Kalibrasi Merkuri (Hg)

Grafik fotokatalisis dari limbah Merkuri yang disinari UV ditampilkan pada gambar 4.6 berikut:

Gambar 4.6. Grafik Fotokatalisis

Secara detail disajikan pada Tabel 4.2. Persentasi Fotodegradasi berikut:

No	Waktu (menit)	Konse 5 p	entrasi pm	Konsentrasi 20 ppm			
`, ´,	(incint)	HG+UV	HG+NP+UV	HG+UV	HG+NP+UV		
1	0	0	0	0	0		
2	30	15.66	21.68	26.34	33.31		
3	60	19.27	27.71	29.37	34.61		
4	90	22.89	28.91	23.46	29.22		
5	120	21.68	25.90	18.36	22.54		
6	150	20.48	25.30	18.21	20.22		

Tabel 4.2. Persentasi Fotodegradasi

4.5. Hasil Sintesis Nanopartikel *Nickel Ferrite* (NiFe₂O₄)

Telah berhasil disintesis Nanopartikel *Nickel Ferrite* (NiFe₂O₄) dengan metode kopresipitasi yang disintesis pada suhu 90° C dan di Furnace pada suhu 90° C selama 4 (empat) jam. Serbuk dari nanopartikel hasil sintesis (gambar 4.1) akan dilakukan karakterisasi XRD, TEM, dan UV-Vis.

4.6. Analisis X-Ray Diffractometer (XRD)

Untuk menganalisis struktur kristalin dari sampel nanopartikel yang dihasilkan akan dilakukan karakterisasi XRD. Detektor XRD yang digunakan CuKα1 dengan panjang gelombang 1,5406 Å. Kemudian data diolah menggunakan *software Origin* sehingga diperoleh seperti yang ditampilkan pada (gambar 4.2). Berdasarkan spektrum XRD yang ditampilkan pada gambar 4.2 terdapat empat puncak difraksi dari sampel. Puncak-puncak difraksi tersebut dilengkapi dengan *indeks miller* (*hkl*) dari sampel.

Proses penandaan puncak-puncak difraksi tersebut diawali dari penyesuaian data JCPDS *Card* 89-4927 dengan seri PDF2 terhadap data spektrum hasil karakterisasi XRD. Berdasarkan data JCPDS *Card* 89-4927 (Lazarević et al., 2012) bidang hkl yang terbentuk ada sembilan yaitu (111), (220), (311), (222), (400), (331), (422), (511), dan (440). Dari hasil penyesuaian data tersebut hanya dapat ditentukan empat bidang hkl yang muncul yaitu (220), (311), (400), dan (331).

Hilangnya *peak* yang lain dapat diasumsikan akibat dari proses sintesis yang dilakukan pada suhu rendah ataupun proses *furnace* yang dilakukan pada suhu dibawah 100 °C, sehingga *peak* bidang hkl yang seharusnya muncul, menjadi tidak terlihat secara signifikan dan dapat disebut sebagai *noise* (Maulia dkk., 2017). Faktor lain munculnya *noise* pada grafik XRD dapat disebabkan oleh *settingan* instrumentasi dari alat XRD yang digunakan. Hal lain yang mempengaruhi *noise* pada grafik XRD dapat disebabkan oleh proses sintesis kimia yang mungkin kurang sempurna, proses sintesis yang kurang sempurna mengakibatkan sampel nanopartikel yang dihasilkan mengalami cacat kristal atau sering disebut dengan *strain* pada kristal. Dengan munculnya bidang hkl tersebut dapat diasumsikan bahwa nanopartikel yang terbentuk bersifat polikristalin karena terdapat lebih dari satu puncak (*peak*) difraksi yang muncul. Tingkat kristalinitas dari nano partikel yang dihasilkan dapat dilihat dari tinggi rendahnya peak yang muncul.

4.6.1. Ukuran Kristallit dan Parameter Kisi

Puncak-puncak difraksi yang muncul dapat diidentifikasi ukuran kristalit dan parameter kisi *(Lattice Parameter)* berdasarkan lebar puncak setengah gelombang (*Full Width Height Maximum*) atau sering disebut dengan FWHM. Informasi parameter kisi, ukuran kristallit, FWHM, dapat dilihat pada (tabel 4.1).

Berdasarkan data yang disajikan pada tabel 4.1. dapat dilihat bahwa sampel yang dihasilkan memiliki ukuran kristalit dalam orde nanometer, hal ini ditandai dengan ukuran kristallit yang dihasilkan dibawah 100 nm lebih kecil dari ukuran *bulk*nya. Ukuran kristalit yang dihasilkan dari 37,42 nm sampai dengan 39,48 nm. Dengan ralat sebesar 0,18 nm sampai dengan 0,23 nm. Dengan ukuran rata-rata kristalit yang dihasilkan sebesar 37,42 \pm 0,21 nm. Parameter kisi untuk setiap kristalit yang dihasilkan beragam namun cenderung sama yaitu masih dalam orde angstrom. Besarnya nilai parameter kisi yang dihasilkan berkisar dari 8,31 sampai dengan 8,36 angstrom dengan ralat rata rata sebesar 0,16 angstrom atau parameter kisi yang diperoleh sebesar 8,33 \pm 0,16 Å. Menurut tabel 4.1. dapat dilihat bahwa sampel nanopartikel yang dihasilkan mengalami *strain* atau cacat kristal. Munculnya strain pada sampel dapat dipengaruhi oleh proses sintesis kimia yang kurang sempurna, berdasarkan data *strain* yang tersebar di setiap *peak* kristal yang muncul dan parameter kisi serta ukuran kristalit yang dihasilkan dapat diasumsikan bahwa jenis *strain* yang dihasilkan bersifat seragam atau *uniform strain* (Maulia dkk., 2017). Efek dari *strain* tersebut dapat mengubah kedudukan atom nanopartikel yang dihasilkan baik dalam sub kisi tetrahedral maupun oktahedral. Akibat dari perubahan kedudukan atom tersebut maka *ekspansi* dan *distorsi* pada kisi disub kisi *tetrahedral* dan *oktahedral* juga tak bisa dihindari, hal ini ditandai dengan besarnya nilai parameter anion (*u*) yang dihitung dengan persamaan 4.1. berikut:

$$u = \left[(r_A + r_0) \frac{1}{\sqrt{3}a} + \frac{1}{4} \right]$$
(4.1)

(Indrayana, 2018)

Berdasarkan persamaan 4.1. diperoleh besarnya nilai parameter anion sebesar 0.4477 Å hal ini melebihi dari nilai parameter anion ideal sebesar u=0,375 Å. Selisih nilai *u* tersebut dapat mengkonfirmasi adanya penyimpangan posisi – posisi ion nanopartikel dari posisi ideal (Tholkappiyan dan Vishita, 2015). Dampak dari penyimpangan tersebut mengakibatkan terjadinya perubahan panjang ikatan (*Hoping length*) dalam *site tetrahedral* (site A) maupun *site oktahedral* (site B). panjang ikatan yang terbentuk dapat dihitung dengan persamaan 4.2. dan 4.3 berikut (Gabal dkk., 2012):

$$\mathbf{R} \quad L_A = a\sqrt{3}\left(\Delta + \frac{1}{8}\right) \tag{4.2}$$

$$L_B = a \left(3\Delta^2 - \frac{\Delta}{2} + \frac{1}{16} \right)^{1/2}$$
(4.3)

 L_A menggambarkan panjang ikatan antara kation dan anion oksigen yang dibentuk dalam subkisi tetrahedral (site A), L_B menginformasikan panjang ikatan antara kation dan anion oksigen pada subkisi oktahedral (site B), dan Δ adalah penyimpang parameter anion dari kondisi ideal. Dari persamaan 4.2 dan 4.3. tersebut diperoleh besarnya panjang ikatan subkisi tetrahedral dan sibkisi oktahedral adalah L_A = 2,84 Å dan L_B =1,699 Å. Dengan berubahnya kedudukan atom di dalam subkisi site A dan site B maka ditemukannya perbedaan antara

parameter kisi secara teoritik (ideal) terhadap parameter kisi secara eksperimen. Secara teoritik parameter kisi dapat dihitung dengan persamaan 4.4. berikut:

$$a_{th} = \frac{8}{3\sqrt{3}} \left[(rA + r0) + \sqrt{3}(rB + r0) \right]$$
(4.4)

(Gabal dkk., 2012).

Nilai a_{th} merupakan besarnya parameter kisi yang dihitung secara teoritik, rA merupakan jari – jari ionik atom yang terdapat pada *site tetrahedral* (*site A*) sebesar 1.47 Å dan rB sebesar 0.735 Å merupakan jari-jari ionik atom yang terdapat pada *site oktahedral* (*site B*), sedangkan r0 merupakan jari jari ionik atom oksigen yang tersebar pada kedua site yang berukuran 1,38 Å (Prasad dkk., 2015). Berdasarkan persamaan 4.4 diperoleh besarnya nilai parameter kisi secara teoritik adalah 10,02 Å, hal ini berbeda dengan parameter kisi yang diperoleh secara eksperimen dengan rata-rata sebesar 8,33 Å.

4.7. Analisis Transmission Electron Microscopy (TEM)

Analisis TEM telah dilakukan dan menghasilkan *image* seperti yang disajikan pada (gambar 4.3) dengan perbesaran 50 nm dan ukuran butir yang dapat diukur berkisar ± 104 nm. Dari hasil karakterisasi TEM dapat terlihat bahwa sampel nanopartikel yang dihasilkan tidak bulat sempurna. Selain itu sampel yang dihasilkan dapat diasumsikan mengalami aglomerasi, sehingga sulit diukur diameter ukuran butirnya. Terjadinya aglomerasi mungkin disebabkan oleh pH dari larutan nanopartikel NiFe₂O₄ ketika sintesis. Sehingga pH dari nanopartikel tersebut mempengaruhi energi ionik yang terdapat pada partikel yang dihasilkan sehingga menyebabkan interaksi gaya tarik dan gaya tolak antar partikel atau dikenal dengan gerak *brown*. Jika gaya antar ikatan ionik terlalu tinggi maka besar kemungkinan terjadinya aglomerasi antar partikel.

4.8. Analisis Spektrofotometer UV-Vis

4.8.1. Analisis Energi Gap Nanopartikel NiFe₂O₄

Telah dilakukan karakterisasi UV-Vis terhadap nanopartikel NiFe₂O₄ sebanyak 10 ppm yang diukur absorbansinya dengan panjang gelombang pada rentang 200 sampai dengan 700 nm diperoleh hasil sebagai mana disajikan pada (gambar 4.4).

Berdasarkan gambar 4.4. yang disajikan dapat diperoleh informasi berupa lebar celah pita energi (*band gap*). Besarnya energi gap yang dimiliki oleh nanopartikel NiFe₂O₄ sebesar 3,17 eV. Besarnya nilai energi gap dihitung dengan dengan persamaan 4.5. berikut:

$$Eg = \frac{hc}{\lambda} \tag{4.5}$$

Nilai h merupakan konstanta plank yang besarnya 6.624 x 10^{-34} Js dan c merupakan kecepatan cahaya (c = 3 x 10^8 m/s) dan λ merupakan panjang gelombang absorbansi. Untuk menentukan besarnya celah pita energi gap diperoleh dengan memplot grafik Energy gap dengan absorbansi dengan menggunakan persamaan Kubelka-Munk (F(R)) yang dapat dilihat pada persamaan 4.6. berikut:

$$F(R) = \frac{\kappa}{s} = \frac{(1-R)^2}{2R}$$
(4.6)

Nilai F(R) merupakan faktor *kubelka munk*, K adalah koefisien absorbansi dan S merupakan koefisien scattering. Berdasarkan kan grafik yang disajikan pada gambar 4.4 dilakukan *fitting linear* sehingga diperoleh besarnya energy gap dari nanopartikel NiFe₂O₄ adalah 3.17 eV. Sehingga dapat diasumsikan bahwa nanopartikel NiFe₂O₄ termasuk material yang bersifat semikonduktor sehingga memiliki potensi sebagai agen fotodegradasi.

4.8.2. Analisis Fotokatalisis

Berdasarkan data spektrofotometer UV-Vis limbah merkuri buatan, disajikan pada gambar 4.5 terlihat bahwa kurva kalibrasi dari limbah merkuri yang dibuat dengan konsentrasi 5 ppm, 10 ppm, 15 ppm, dan 20 ppm dan diperoleh nilai persamaan garis (*Fit Linear*) Y = 0.3892x - 0.3. Dengan nilai R² sebesar 0,9173 yang bermakna sebagai tingkat akurasi kurva sebesar 91,73%. Absorbansi maksimum dari 5 ppm adalah 1.66 berada pada Panjang gelombang 462 nm. Sedangkan absorbansi maksimum dari konsentrasi 20 ppm adalah 6,94 berada pada panjang gelombang 464 nm.

Konsentrasi 5 ppm limbah merkuri yang disinari UV pada Panjang gelombang 462 nm dengan variasi waktu penyinaran 0, 30, 60, 90, 120, dan 150 menit terlihat bahwa terjadinya penurunan limbah Merkuri dengan persentase berturut turut adalah 15,66 %, 19,27 %, 22,89%, 21,68%, dan 20,48% dari persentase tersebut dapat dibuat grafik sebagaimana yang disajikan pada gambar 4.6. dari persentasi tersebut dapat dilihat kenaikan fotodegradasi dari 0 menit ke 30 menit sebesar 15,66% dan pada 30 menit berikutnya yaitu menit ke enam puluh persentase meningkat dari 15,66 menjadi 19,27 dengan kenaikan sebesar 3,61% dan pada menit ke 90 terus mengalami peningkatan proses fotodegradasi dari 19,27 menjadi 22.89 dengan kenaikan sebesar 3.62% sedangkan pada menit ke 120 dan 150 kemampuan fotodegradasi mengalami penurunan. Namun secara umum sinar UV mampu mendegradasi limbah Merkuri dengan kelajuan rata-rata degradasi sebesar 16,66%.

Aktivitas fotodegradasi pada 5 ppm limbah merkuri yang disinari UV dan dicampurkan nanopartikel NiFe₂O₄ dapat dilihat pada gambar 4.6. dari gambar tersebut menginformasikan bahwa adanya pengaruh penambahan nanopartikel NiFe₂O₄ terhadap limbah merkuri untuk membantu proses fotodegradasi. Dari tabel 4.2. ditampilkan bahwa pada menit ke 0 hingga 30 menit pertama aktivitas fotodegradasi mencapai 21,68% dan pada menit ke 60 meningkat menjadi 27,71%, sedangkan pada menit 90 terus mengalami peningkatan mencapai 28,91% namun pada menit 90 tersebut terlihat bahwa kemampuan fotodegradasinya mulai berkurang. Berkurangnya kemampuan fotodegradasi dari nanopartikel NiFe₂O₄ ditandai dengan menurunya persentase pada menit ke 120 dan 150 yaitu sebesar 25,90% dan 24,30%.

Konsentrasi 20 ppm limbah merkuri berdasarkan data yang disajikan pada tabel 4.2. menginformasikan bahwa terjadinya aktivitas fotodegradasi pada limbah merkuri hanya dengan dilakukan penyinaran sinar UV dengan persentase sebesar 26,34% dalam waktu 30 menit. Dan pada waktu 30 menit berikutnya dari 30 hingga 60 menit persentase meningkat menjadi 29,37 %. Pada waktu 30 menit berikutnya dari 60 menit hingga 90 menit persentase degradasi mengalami penurunan menjadi 23,46 %, dan terus menurun di menit ke 120 dan 150 menjadi 18,36 % dan 18,21 %. Sehingga pada kondisi ini aktivitas fotokatalitik dari sinar UV yang berinteraksi dengan limbah Hg telah mengalami kejenuhan atau tidak lagi terjadinya proses fotodegradasi (Putra dkk., 2018), dan jika diukur dalam waktu yang lebih lama dapat diasumsikan akan cenderung menghasilkan grafik yang konstan, hal ini terlihat dari persentase degradasi yang terjadi dari rentang waktu 120 ke 150 yaitu sebesar 0.15% dan nilai ini akan terus menurun seiring dengan meningkatnya waktu paparan sinar UV.

Limbah merkuri dengan konsentrasi 20 ppm yang dicampurkan dengan nanopartikel dan disinari UV memberikan respon fotodegradasi sebesar 33,31% di 30 menit pertama dan terus meningkat menjadi 34,61% di menit ke 60 dengan kenaikan 1.3%. Pada menit ini berdasarkan grafik yang disajikan pada gambar 4.6. dapat dikatakan nanopartikel bekerja pada kondisi optimum untuk mendegradasi limbah Hg. dan mengalami penurunan di menit ke 90 sebesar 5,39% dan terus menurun pada menit ke 120 sebesar 6.68% dan 2,22% pada menit ke 150.

Secara umum adanya pengaruh Sinar UV terhadap aktivitas fotokatalitik dari limbah merkuri. Pencampuran nanopartikel NiFe₂O₄ terhadap aktivitas fotokatalitik juga memberikan pengaruh yang signifikan dalam membantu proses fotodegradasi meskipun di beberapa menit kemudian mengalami penurunan kemampuan fotodegradasi atau proses fotodegradasinya menjadi terhenti. Penurunan tersebut dapat saja terjadi apabila tidak adanya elektron bebas yang berpindah dari pita valensi ke pita konduksi, selain itu dapat diasumsikan permukaan nanopartikel telah tertutupi limbah merkuri saat proses absorbsi yang mengakibatkan meningkatnya ikatan antara nanopartikel dan limbah Hg yang menyebabkan meningkatnya energi gap dari Nanopartikel NiFe₂O₄ sehingga foton-foton atau energi yang dihasilkan lampu UV tidak mampu membebaskan elektron untuk berpindah dari satu pita valensi ke pita konduksi (Yakob dkk., 2019).

Kemampuan fototakatalitis dari suatu nanopartikel dipengaruhi oleh ukuran butir, dimana ukuran butir merupakan gabungan dari beberapa kristalit yang setiap kristallit dibangun dari himpunan kisi-kisi atomik dan disetiap sub kisi memiliki elektron sebagai agen *influencent* transmisi elektron yang mendukung proses fotodegradasi (Indrayana, 2018). Selain itu kemampuan absorben dari nanopartikel juga dipengaruhi oleh jenis dan konsentrasi limbah yang akan didegradasi. Dari tabel 4.2. dan grafik yang disajikan pada gambar 4.6. dapat disimpulkan bahwa nanopartikel NiFe2O4 dapat dianggap kandidat untuk nano *photocatalyst* atau *nano-absorben* untuk fotodegradasi limbah merkuri hal ini disebabkan potensinya dalam mendegradasi dengan sinar UV dan memiliki respon yang signifikan di beberapa menit awal hingga pada batas optimum.

BAB V PENUTUP

5.1. Kesimpulan

Adapun kesimpulan yang dapat diambil pada penelitian ini adalah:

- Telah berhasil dilakukan karakterisasi Nanopartikel NiFe₂O₄ dengan menggunakan metode kopresipitasi, dari hasil karakterisasi XRD diperoleh ukuran kristalit sebesar 37,42 nm dan bersifat *polykristallin*. Sampel nanopartikel NiFe₂O₄ dapat diasumsikan beraglomerasi sehingga sulit ditentukan ukuran butir berdasarkan citra TEM. Nanopartikel NiFe₂O₄ memiliki energi gap sebesar 3,17 eV.
- 2. Aktivitas fotodegradasi pada limbah merkuri terhadap variasi waktu penyinaran memberikan pengaruh yang signifikan pada konsentrasi 5 ppm maupun 20 ppm. Penambahan nanopartikel NiFe₂O₄ pada limbah merkuri dapat meningkatkan respon yang signifikan terhadap proses fotodegradasi , sehingga nanopartikel tersebut dapat disebut sebagai agen fotodegradasi.

5.2. Saran

Dalam melakukan sintesis nanopartikel $NiFe_2O_4$ pada penelitian selanjutnya sebaiknya dilakukan sintering untuk menghindari aglomerasi dan strain pada kristal, selain itu diperlukan citra SEM untuk mengkonfirmasi citra TEM terhadap aglomerasi yang dialami oleh sampel.

Perlu dilakukan penelitian ulang terhadap nanopartikel NiFe₂O₄ terhadap fotodegradasi limbah merkuri atau limbah lainnya seperti methylene blue dan limbah logam berat lainnya. Dengan mengkonfigurasi parameter sintesis dari nanopartikel dan komposisi limbah buatan.

DAFTAR PUSTAKA

Abdullah, M. (2009). Pengantar Nanosains. Bandung: Penerbit ITB.

- Abdullah, M., dan Khairurrijal. (2009). Review: Karateristik Nanomaterial. *Jurnal* Nanosains dan Nanoteknologi 2, no. 1.
- Agus. (2012). Karakterisasi Material Prinsip dan Aplikasinya dalam Penelitian Kimia. Bandung: Upi Press.
- Aliah, H., dan Karlina, Y. (2015). Semikonduktor Tio2 Sebagai Material Fotokatalis Berulang. *Jurnal Istek*, 9(1).
- Ambarsari, H., dan Qisthi, A. (2017). Remediasi merkuri (Hg) pada Air Limbah Tambang Emas Rakyat dengan Metode Lahan Basah Buatan Terpadu. Jurnal Teknologi Lingkungan. 18(2).
- Arisandi, P., (2004). 10 Hal Tentang Penyakit Minamata. Gresik: Driyorejo.
- Ariswan. (2016). *Hand Out Struktur Kristal*. Yogyakarta: Universitas Negeri Yogyakarta.
- Azhar, F. F. (2019). Pemanfaatan Nanopartikel Perak Ekstrak Belimbing Wuluh Sebagai Indikator Kolorimetri Logam Merkuri. *Jurnal Ipteks Terapan*. 13(1).
- Batubara, N. I. (2020). Sintesis dan Karakterisasi Material Soft Magnetic Nixzn1-Xfe2o4 (X= 0, 2–0, 8) Pasir Besi Lombok dengan Metode Kopresipitasi.

Bintang, M. 2010. Biokimia Teknik Penelitian. Jakarta: Erlangga.

- Dewi, N. E. (2017). Sintesis Pigmen Geothit (α-FeOOH) dari Limbah Bubuk Besi dengan Variasi Suhu Sintesis. Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim.
- Elzey, S. R. (2010). *Applications and Physicochemical Characterization of nanomaterials in Environmental, Health, and Safety Studies* (Doctoral dissertation, The University of Iowa).

- Fajriyah, D. S. (2019). Pra Rencana Pabrik Vinil Klorida dari Asetilen dan Hidrogen Klorida dengan Kapasitas 50.000 Ton/Tahun Perancangan Alat Utama Destilasi (Doctoral dissertation, ITN MALANG).
- Febrini, V. (2014). Effect of Calcination on Serpentin Crystal Structure Gathered form Jorong Sungai Padi, Nagari Lubuak Gadang Kecamatan Sangir, Solok Selatan. *Pillar Of Physics*. 4(2).
- Gabal, M. A., El-Shishtawy, R. M., dan Al Angari, Y. M. (2012). Structural and Magnetic Properties of Nano-Crystalline Ni–Zn Ferrites Synthesized Using Egg-White Precursor. Journal of Magnetism and Magnetic Materials. 324(14).
- Hardi, M., dan Mussadun, M. (2016). Pengendalian Tata Ruang Kawasan Pertambangan Terhadap Kegiatan Pertambangan Emas Ilegal di Kabupaten Pidie. Jurnal Pembangunan Wilayah & Kota. 12(1).
- Hermawan, A., Lismawenning, D., dan Suharyadi, E. (2015). Sintesis Nanopartikel Magnesium Ferrite (MgFe₂O₄) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. no. April, pp.
- H. Magnetit. (2018) Sintesis, Karakterisasi Struktur dan Sifat Optik Nanopartikel Hidroksiapatit/Magnetit. 3(1).
- I. Ayu, G. Widihati, N. P. Diantariani, dan F. Nikmah. (2016). Fotodegradasi Metilen Biru Dengan Sinar UV Dan Katalis Al2O3. no. January.
- I.P.T. Indrayana, Juliana, E. Suharyadi. (2018). UV Light-Driven Photodegradation of Methylene Blue by Using UV Light-Driven Photodegradation of Methylene Blue. pp. 0–5.
- Kadi, M. W., dan Mohamed, R. M. (2014). Synthesis And Optimization Of Cubic NiFe₂O₄ Nanoparticles With Enhanced Saturation Magnetization. *Ceramics International*, 40 (1).
- Karlík, M. (2001). Lattice Imaging in Transmission Electron Microscopy. *Materials Structure*, 8 (1).
- Kinasih, D. A. S., dan Nurhasanah, I. (2020). Estimasi Ukuran Kristal Dan Parameter Elastisitas Nanokristal Zno: Ce Menggunakan Metode Size-Strain Plot. *Berkala Fisika*, 23(2), 56-62.

- Krisnawan, A. (2009). Karakterisasi Sampel Paduan Magnesium Jenis A29 1D dengan Berbagai Variasi Waktu Milling Menggunakan X-Ray Flouresence (XRF) Dan Difraction (XRD). Skripsi. Jakarta : Fakultas Sains dan Teknologi UIN Syarif Hidayatullah.
- Lazarević, Z. Ž., Jovalekić, Č., Milutinović, A., Romčević, M. J., dan Romčević, N. Ž. (2012). Preparation and Characterization of Nano Ferrites. Acta Physica Polonica, A.121(3).
- Liani, P. H., Sembiring, S., dan Simanjuntak, W. (2014). Preparasi Alumina Dengan Metode Elektrokimia Sebagai Bahan Baku Pembuatan Zeolit Sintetik dan Karakterisasinya Dengan *Transmission Electron Microscopy* (TEM). Jurnal Teori dan Aplikasi Fisika. 2 (2).
- Manurung, P. (2013). X-Ray Diffraction and Microstructure of Tin Dioxide with Addition of Fe. *Jurnal Ilmu Dasar*. 12(1).
- Masruroh, A. B., Titus, L., dan Rachmat, T. T. (2013). Penentuan Ukuran Kristal (*Crystallite Size*) Lapisan Tipis PZT dengan Metode XRD Melalui Pendekatan Persamaan Debye Scherrer. *Journal of Educational Innovation*, 1(2).
- Maulia, R., Putra, R. A., dan Suharyadi, E. (2017). Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe₂O₄) Nanoparticles. *IOP Conference Series: Materials Science and Engineering*, 202(1). https://doi.org/10.1088/1757-899X/202/1/012045.
- Merdekani, S. (2013). Sintesis Partikel Nanokomposit Fe₃O₄/SiO₂ dengan Metode Kopresipitasi. Prosiding Seminar Nasional Sains dan Teknologi Nuklir. PTNBR - BATAN Bandung, 04 Juli 2013.
- Muflihatun, S. S., dan Suharyadi, E. (2015). Sintesis Nanopartikel Nickel Ferrite (NiFe₂O₄) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. *Jurnal Fisika Indonesia*. 19(55).
- Muryani, E. (2019). Sinergisitas Penegakan Hukum Pada Kasus Pertambangan Emas Tanpa Izin di Kabupaten Banyumas, Jawa Tengah. *Bestuur*. 7(2).

- Naimah, S., dan Ermawati, R. (2011). Efek Fotokatalisis Nano TiO₂ Terhadap Mekanisme Antimikrobia E Coli Dan Salmonella. *Journal of Industrial Research (Jurnal Riset Industri)*. 5(2).
- Novi, C., Wahyuni, E. T., dan Aprilita, N. H. (2013). Pengaruh Ion Pb (II) dan Ion Cd (II) terhadap efektivitas fotoreduksi ion Hg (II) yang terkatalisis TiO₂. *BIMIPA*. 23(1).
- Ningsih, S. K. W. (2016). Sintesis Anorganik. Padang: UNP Press.
- Octavia, R. (2014). Pengaruh konsentrasi larutan nanopartikel perak terhadap tegangan keluaran sel volta yang berisi larutan H_2SO_4 . Yogyakarta, FMIPA UNY.
- Okoronkwo, N.E., Igwe, J.C., dan Okoronkwo, I.J. (2007). Environmental Impacts of Mercury and Its Detoxification from Aqueous Solutions, *Afr. J. Biotech.*, 6, 335-340.
- Owen, T. 2010. Fundamentals of Modern UV-Visible Spectroscopy. Agilent Technology.
- Pangoloan. S. R. (2012). Kajian Spektra Ir dan AAS Lempung Terpilar– Fe. *Photon: Jurnal Sain dan Kesehatan*. 3(1), 37-44.
- Putranto, T. T. (2011). Pencemaran Logam Berat Merkuri (Hg) pada Airtanah. *Teknik*. 32(1).

معةالرانرك

- Putra, R. A., Alamsyah, W., dan Indrayana, I. P. T. (2018). Characterization of Microstructural and Optical Properties of MgFe₂O₄ Nanoparticles for Photocatalyst of Mercury (Hg). 11(1), 1–5.
- Putri, T. E., Setiawati, D., dan Suharyadi, E. (2015). Studi Adsorpsi Logam Fe (II), Ni (II), dan Cu (II) dalam Limbah Cair Buatan Menggunakan Adsorben Nanopartikel Magnesium Ferrite. *Prosiding HFI XXIX*, 204-7.
- Prasad, B. V., Babu, B. R., dan Prasad, M. S. R. (2015). Structural and dielectric studies of Mg2+ substituted Ni–Zn ferrite. *Materials Science-Poland*. 33(4), 806-815.

- Pratama, B. W., dan Dwandaru, W. B. (2017). Uji Karakteristik Morfologi, Fisik, Dan Kimia Butiran Sub Micron Nanomaterial Dengan Variasi Sumber Karbon Sebagai Alat Filtrasi Sederhana. *E-Journal Fisika*, 6(3).
- Rahayu, S., Adi, S., I, G. A. K., dan Rachmi, H. (2017). Solidifying The Just Law Protection for Farmland to Anticipate Land Conversion. *International Journal of Economic Research*, 14(13).
- Rahma, D. E. (2019). Sintesis Nanopartikel Emas Menggunakan Bioreduktor Ekstrak Daun Ketapang (Terminalia Catappa) Dengan Irradiasi Microwave (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).
- Rangkuti, A. M. (2009). Analisis Kandungan Logam Berat Hg, Cd, Dan Pb Pada Air Dan Sedimen Di Perairan Pulau Panggang-Pramuka Kepulauan Seribu, Jakarta. Skripsi Institut Pertanian Bogor. Bogor. H. 1-101.
- Roman, M. (2018). Karakteristik Struktur Kristal Dan Kandungan Mineral Batuan Sedimen Di Kelurahan Leang-Leang Kecamatan Bantimurung Kabupaten Maros. Doctoral dissertation. Universitas Islam Negeri Alauddin Makassar.
- Rondonuwu, S. B. (2014). Fitoremediasi Limbah Merkuri Menggunakan Tanaman Dan Sistem Reaktor. *Jurnal Ilmiah Sains*. 14(1), 52-59.
- Sara, P. S., Astono, W., dan Hendrawan, D. I. (2018). Kajian kualitas air di sungai ciliwung dengan parameter BOD dan COD. In *Prosiding Seminar Nasional Cendekiawan* (pp. 591-597).
- Salavati, Niasari, M., Davar, F., dan Mahmoudi, T. (2009). A Simple Route To Synthesize Nanocrystalline Nickel Ferrite (NiFe₂O₄) In The Presence Of Octanoic Acid As A Surfactant. *Polyhedron.* 28(8), 1455-1458.
- Sartika, D., Malis, E., & Lestari, A. S. (2020). Studi Penyerapan Logam Berat Pb Menggunakan Nanopartikel Fe₃O₄. JPSE (Journal of Physical Science and Engineering).4(1), 18-22.
- Sudarmaji, J.Mukono, Corie I.P. (2006). *Toksikologi Logam Berat B3 dan Dampaknya Terhadap Kesehatan*. Kesehatan Lingkungan FKM Universitas Airlangga. 21.

- Suharyana. (2012). Dasar-Dasar dan Pemanfaatan Metode Difraksi Sinar-X. Surakarta: Universitas Sebelas Maret.
- Sulniawati, S., Hamzah, B., dan Abram, P. H. (2017). Ekstraksi Ion Merkuri MenggunakanTeknik Emulsi Membran Cair dengan Variasi Konsentrasi Benzoil Aseton dalam Fasa Membran dan Variasi pH Fasa Eksternal. Jurnal Akademika Kimia. 6(4), 232-236.
- Susanti, H. D. (2015). Transport Metilmerkuri (MeHg) dan Merkuri Inorganik (I-Hg) Terhadap Janin dan Asi. *Jurnal Keperawatan*. 4(2).
- Syam, L. M. (2017). Uji Karakteristik Nanopartikel Magnetite (Fe_3O_4) Menggunakan X-RAY Diffraction dan Scanning Electron Microscopy (Doctoral dissertation, Universitas Islam Negeri Alauddin Makassar).
- Tholkappiyan, R., & Vishista, K. (2015). Combustion Synthesis of Mg–Er Ferrite Nanoparticles: Cation Distribution and Structural, Optical, and Magnetic Properties. *Materials Science in Semiconductor Processing*. 40. 631-642.
- Tussa'adah, R. (2015). Sintesis Material Fotokatalis TiO₂ untuk Penjernihan Limbah Tekstil. *Jurnal Fisika Unand*. 4(1).
- Ulhadi, Z., & Naswir, M. (2020). Efektivitas Penyerapan Kombinasi Bentonit dan Pasir Kuarsa Terhadap Penurunan Logam Berat Merkuri (Hg) pada Pencemaran Air Sungai Batang Asai, Kabupaten Sarolangun, Provinsi Jambi. *Jurnal Pembangunan Berkelanjutan*. 3(1), 29-37.
- Underwood, A. L. (2002). Analisis Kimia Kualitatif Edisi Keenam. Jakarta, Erlangga.
- W. Dietrich and S. G. Ebbinghaus.(2013). Preparation And Characterization Of Nanosized Magnesium Ferrite Powders By A Starch-Gel Process And Corresponding Ceramics. pp. 6509–6518.
- Yakob, M., Umar, H., Wahyuningsih, P., dan Almi Putra, R. (2019). Characterization of microstructural and optical CoFe₂O₄/SiO₂ ferrite nanocomposite for photodegradation of methylene blue. AIMS Materials Science, 6(1), 45–51. https://doi.org/10.3934/matersci.2019.1.45

Yuliah, Y., dan Suryaningsih, S. (2016). Penentuan Ukuran Nanopartikel ZnO secara Spektroskopik. In *Prosiding Seminar Nasional Fisika (E-Journal)* (Vol. 5, pp. SNF2016-MPS).

Yulianti, E. (2010). Petunjuk Praktikum Bioselmol. Yogyakarta, Fisika UNY.

Yulis, P. A. R. (2018). Analisis Kadar Logam Merkuri (Hg) dan (Ph) Air Sungai Kuantan Terdampak Penambangan Emas Tanpa Izin (PETI). Orbital: Jurnal Pendidikan Kimia, 2(1), 28-36.

LAMPIRAN-LAMPIRAN

Lampiran 1. Perhitungan Persamaan Reaksi

Bahan Utama :

FeCl3.6H₂O (*ferric chloride hexa-hydrate*,Mr = 270,6 g/mol)

NiCl₂.6H₂O (*Nickel chloride hexa-hydrate*,Mr = 237.66 g/mol)

HCl (*chloride acid*, Mr = 36,46 g/mol)

NaOH (*sodium hydroxide*, Mr = 40 g/mol)

Akuades

Persamaan Reaksi:

$$NiCl_2 + 2FeCl_3 + 8NaOH + 4H_2O \rightarrow NiFe_2O_4 + 8NaCl + 8H_2O$$

Dari persamaan reaksi tersebut diperoleh perbandingan NiCl₂ dan FeCl₃ sebesar 1 : 2

Perbandingan tersebut menjadi dasar perbandingan Mol. Dengan setting penelitian 0,5 M dalam larutan 40 ml.

Penambahan HCl sebanyak 3,3 ml sebagai katalis, untuk mempercepat proses reaksi: Perhitungan Massa: NiCl₂ : 0,5 M M = n/V $n = 0,5 \times 0,04 = 0,02$ mol $gr = n \cdot Mr = 0,02 \times 237.66 = 4,7532$ gram

FeCl₂ : 1 M M = n/Vn = 1 x 0,04 = 0,04 mol gr = n . Mr = 0,04 x 270,6 = 10,824 gram

Konsentrasi presipitat NaOH : 10 M NaOH : 10 M $n = 10 \ge 0.04 = 0.4 \mod$ $gr = n \cdot Mr = 0.4 \ge 40 = 16 \mod$

Lampiran 2. Perhitungan Data XRD

1. Perhitungan Parameter Kisi

Tetapan kisi dapat dihitung berdasarkan persamaan Bragg,

$$d = \frac{n\lambda}{2\sin\theta}$$
$$a = d\sqrt{h^2 + k^2 + l^2}$$
$$a = \frac{n\lambda}{2\sin\theta}\sqrt{h^2 + k^2 + l^2}$$
$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial\theta}\Delta\theta\right)^2}$$
$$\Delta a = \sqrt{\left(\frac{n\lambda}{2\sin^2\theta}\left(h^2 + k^2 + l^2\right)\cos\theta\Delta\theta\right)^2}$$

dengan, n adalah orde difraksi (dalam hal ini n = 1), d adalah jarak antar bidang Bragg, λ adalah panjang gelombang sinar-X, θ adalah sudut difraksi, $\Delta \theta$ adalah ralat θ yang diperoleh dengan program origin 9, a adalah parameter kisi, Δa adalah ralat a, dan hkl adalah indeks Miller bidang kristal.

2. Perhitungan Ukuran Kristallit

Perhitungan ukuran partikel dapat dilakukan dengan menggunakan persamaan Scherrer,

A R - **R A N**
$$I = \frac{10.9\lambda}{B\cos\theta}$$

$$\Delta t = \sqrt{\left(\frac{\partial t}{\partial\theta}\Delta\theta\right)^2}$$
$$\Delta t = \sqrt{\left(\frac{0.9\lambda\sin\theta}{B\cos^2\theta}\Delta\theta\right)^2}$$

dengan, *t* adalah ukuran partikel, *B* adalah lebar setengah puncak (*full width at half maximum* = FWHM), Δt adalah ralat ukuran kristallit.

3. Strain pada kristal

$$\varepsilon = \frac{B}{\tan \theta}$$

Dimana :

- ε = strain kristal
- B = FWHM pada puncak diffraksi
- θ = Sudut pada puncak diffraksi
- 4. Penyimpangan nilai Parameter Anion

$$u = \left[(r_A + r_0) \frac{1}{\sqrt{3}a} + \frac{1}{4} \right]$$

- U = parameter anion ($U_{ideal} = 0.375$ Å)
- rA = radius kation sub kisi tetrahedral
- $r_0 = radius ion oksigen (0,318 nm)$
- a = parameter kisi
- 5. Panjang Ikatan

$$L_A = a\sqrt{3}\left(\Delta + \frac{1}{8}\right)$$
$$L_B = a\left(3\Delta^2 - \frac{\Delta}{2} + \frac{1}{16}\right)^{1/2}$$

- L_A : Panjang ikatan molekul pada subkisi Tetrahedral (A)
- L_B : Panjang ikatan molekul pada subkisi Oktahedral (B)
- Δ : Penyimpangan panjang ikatan molekul pada subkisi Oktahedral (B)
- a : paramater kisi A R R A N I R Y
- δ : deviasi dari parameter *oxygen* (*u ideal* =0,375)

Bidang HKL	20	cos θ	λ(Å)	K	FWHM	t (nm)	$\pm \Delta t$	a(Å)	$\pm \Delta a$	strain
220	30.39	0.97	1.5406	0.9	0.22	37.42	0.23	8.31	0.20	0.39
311	35.61	0.95	1.5406	0.9	0.22	37.93	0.18	8.36	0.13	0.12
400	43.3	0.93	1.5406	0.9	0.22	38.85	0.20	8.36	0.20	0.61
331	47.7	0.91	1.5406	0.9	0.22	39.48	0.23	8.31	0.11	0.06

6. Tabel Perhitungan Analisis XRD

Lampiran 3. Citra TEM

Lampiran 4. Perhitungan Pembuatan Larutan NiFe₂O₄ dan HgCl₂

Proses Pembuatan 10 ppm Larutan NiFe₂O₄

10 ppm = 10 mg / 1000 ml akuades

Proses Pembuatan Larutan HgCl₂

- 1. Proses pembuatan larutan induk Hg sebanyak 200 ppm dalam 250 ml 200 ppm = 20 mg/ 1000 ml
- 2. Pengenceran dalam setiap 50 ml larutan standar Hg sebesar 5 ppm, 10 ppm, 15 ppm, dan 20 ppm.
- a. 200 ppm . V1 = 5 ppm . 50 ml 200 ppm . V1 = 250 ppm.ml V1 = 1,25 ml
- b. 200 ppm . V1 = 10 ppm . 50 ml 200 ppm . V1 = 500 ppm.ml V1 = 2,5 ml
- c. $200 \text{ ppm} \cdot \text{V1} = 15 \text{ ppm} \cdot 50 \text{ ml}$ $200 \text{ ppm} \cdot \text{V1} = 750 \text{ ppm.ml}$ V1 = 3,75 ml
- d. $200 \text{ ppm} \cdot \text{V1} = 20 \text{ ppm} \cdot 50 \text{ ml}$ $200 \text{ ppm} \cdot \text{V1} = 1000 \text{ ppm.ml}$ V1 = 5 ml

AR-RANIRY

Lampiran 5. Data Spektrofotometer UV-Vis

00000 Begin Spectral Data<<<<<

λ (nm)	R										
200	0.23718	248	0.11064	296	0.74597	344	1.404	392	0.234	440	0.23598
201	0.23713	249	0.11361	297	0.77098	345	1.352	393	0.232	441	0.23498
202	0.23708	250	0.11859	298	0.79998	346	1.299	394	0.23	442	0.23397
203	0.23704	251	0.12356	299	0.83099	347	1.243	395	0.228	443	0.23397
204	0.23699	252	0.12954	300	0.86399	348	1.187	396	0.227	444	0.23297
205	0.23695	253	0.13651	301	0.89899	349	1.13	397	0.226	445	0.23196
206	0.2369	254	0.14448	302	0.936	350	1.073	398	0.225	446	0.23096
207	0.23686	255	0.15340	303	0.975	351	1.016	399	0.225	447	0.22995
208	0.23682	256	0.16443	304	1.014	352	0.961	400	0.225	448	0.22995
209	0.23678	257	0.1764	305	1.053	353	0.907	401	0.225	449	0.22895
210	0.23674	258	0.19038	306	1.092	354	0.855	402	0.225	450	0.22795
211	0.2367	259	0.20635	307	1.13001	355	0.805	403	0.225	451	0.22795
212	0.23666	260	0.22332	308	1.16701	356	0.758	404	0.226	452	0.22694
213	0.23662	261	0.2433	309	1.20301	357	0.713	405	0.227	453	0.22694
214	0.23058	262	0.26427	310	1.23801	358	0.671	406	0.228	454	0.22595
215	0.23654	263	0.28725	311	1.27101	359	0.633	407	0.229	455	0.22595
210	0.23651	264	0.31122	312	1.302	360	0.597	408	0.23	456	0.22495
217	0.23447	265	0.3372	313	1.332	361	0.565	409	0.231	457	0.22495
218	0.23243	200	0.36418	314	1.361	362	0.535	410	0.232	458	0.22496
219	0.2284	267	0.39115	315	1.388	363	0.509	411	0.233	459	0.22496
220	0.22436	268	0.41913	310	1.414	364	0.485	412	0.234	460	0.22497
221	0.22033	209	0.44711	317	1.44	305	0.463	413	0.235	461	0.22498
222	0.2143	270	0.47409	318	1.463	300	0.444	414	0.236	462	0.22499
223	0.20826	271	0.50107	319	1.489	367	0,426	415	0.237	463	0.225
224	0.20223	272	0.52605	320	1.512	368	0.41	410	0.238	464	0.22601
225	0.1942	273	0.55003	321	1.535	309	0.396	417	0.239	405	0.22602
220	0.18717	274	0.37202	322	1.557	370	0.383	418	0.24	400	0.22004
227	0.17915	275	0.392	323	1.578	371	0.371	419	0.24	407	0.22705
228	0.17112	270	0.00899	324	1.598	372	0.30	420	0.241	408	0.22707
229	0.1621	277	0.62398	325	1.018	373	0.349	421	0.241	409	0.2271
230	0.15407	278	0.03497	320	1.035	374	0.339	422	0.241	470	0.22712
231	0.14005	2/9	0.04390	327	1.034	3/3	0.55	423	0.242	4/1	0.22815
232	0.13802	280	0.04990	328	1.000	3/0	0.321	424	0.242	472	0.22817
233	0.13	281	0.03395	323	1.0/9	المثيا	0.313	423	0.242	473	0.2282
224	0.11695	202	0.03335	330	1 405	370	0.303	420	0.242	475	0.22024
233	0.11193	203	0.03393	1322	1.055	3/3	0.290	427	0.24101	475	0.22927
230	0.10791	204	0.05304	222	1 499	N 300	R 0.294	420	0.24101	470	0.2293
738	0.10398	286	0.65294	334	1 696	397	0.278	430	0.24101	478	0.22937
239	0 10086	787	0.65295	335	1.688	383	0.272	430	0.24001	479	0.22841
240	0.09884	288	0.65395	336	1.675	384	0.265	432	0.74	480	0.22845
241	0.09781	289	0.05595	337	1.657	385	0.201	433	0.24	481	0.22848
747	0.09779	290	0.65995	338	1.635	386	0.256	434	0.239	487	0.22852
243	0.09876	291	0.66695	339	1.608	387	0.251	435	0.239	483	0.22756
244	0.09974	292	0.67696	340	1.575	388	0.247	436	0.238	484	0.2276
245	0.10172	293	0.68996	341	1.539	389	0.243	437	0.23699	485	0.22763
240	0.10369	294	0.70497	342	1.497	390	0.24	438	0.23699	480	0.22666
247	0.10667	295	0.72397	343	1.452	391	0.237	439	0.23599	487	0.2267

λ (nm)	R	λ (nm)	R	λ (nm)	R	λ (nm)	R	λ (nm)	R	λ (nm)	R	λ (nm)	R
488	0.22573	536	0.21698	584	0.20159	632	0.18238	680	0.16107	728	0.08081	776	0.00173
489	0.22576	537	0.21692	585	0.20157	633	0.18135	681	0.16004	729	0.07878	777	0.00071
490	0.22479	538	0.21585	586	0.20155	634	0.18133	682	0.16002	730	0.07675	778	-0.00031
491	0.22482	539	0.21579	587	0.20052	635	0.1803	683	0.15899	731	0.07472	779	-0.00133
492	0.22484	540	0.21574	588	0.2005	636	0.18027	684	0.15796	732	0.07269	780	-0.00135
493	0.22387	541	0.21568	589	0.20048	637	0.17924	685	0.15693	733	0.07066	781	-0.00237
494	0.22389	542	0.21563	590	0.19946	638	0.17921	686	0.15691	734	0.06863	782	-0.0024
495	0.22391	543	0.21558	591	0.19943	639	0.17918	687	0.15588	735	0.06561	783	-0.00342
496	0.22292	544	0.21554	592	0.19941	640	0.17815	688	0.15485	736	0.06358	784	-0.00344
497	0.22294	545	0.21449	593	0.19839	641	0.17812	689	0.15382	737	0.06155	785	-0.00346
498	0.22295	546	0.21445	594	0.19836	642	0.17708	690	0.1528	738	0.05953	786	-0.00349
499	0.22295	547	0.21441	595	0.19734	643	0.17705	091	0.15177	739	0.05751	787	-0.00351
500	0.22295	548	0.21438	596	0.19731	644	0.17702	692	0.15075	740	0.05548	788	-0.00354
501	0.22195	549	0.21434	597	0.19728	645	0.17598	093	0.14972	741	0.05446	789	-0.00356
502	0.22194	550	0.21431	598	0.19626	646	0.17595	094	0.1487	742	0.05244	790	-0.00359
503	0.22193	551	0.21328	599	0.19623	647	0.17592	095	0.14008	743	0.05042	791	-0.00361
504	0.22192	552	0.21325	600	0.1952	648	0.17488	090	0.14565	744	0.0484	792	-0.00364
505	0.2219	553	0.21323	601	0.19517	649	0.17485	697	0.14463	745	0.04637	793	-0.00366
506	0.22188	554	0.2132	602	0.19514	650	0.17482	698	0.14261	740	0.04435	794	-0.00369
507	0.22285	555	0.21218	603	0.19411	051	0.17379	099	0.14139	747	0.04333	795	-0.00371
508	0.22282	550	0.21216	604	0.19408	652	0.17376	700	0.14056	748	0.04131	796	-0.00374
509	0.22278	557	0.21214	005	0.19405	053	0.17273	701	0.13854	749	0.03929	797	-0.00377
510	0.22274	558	0.21212	000	0.19302	054	0.1727	702	0.13652	750	0.03827	798	-0.0038
511	0.2227	559	0.2111	607	0.19299	055	0.17267	703	0.1355	751	0.03625	799	-0.00382
512	0.22265	560	0.21108	608	0.19197	650	0.17164	704	0.13347	752	0.03423	800	-0.00385
513	0.2226	561	0.21106	609	0.19194	657	0.17162	705	0.13145	753	0.03321		
514	0.22255	562	0.21005	610	0.19191	658	0.17059	706	0.12943	754	0.03118		
515	0.22249	563	0.21003	611	0.19089	659	0.17057	707	0.12841	755	0.02916		
510	0.22243	564	0.21001	612	0.19086	660	0.17054	708	0.12638	756	0.02814		
517	0.22237	565	0.209	613	0.19083	661	0.10952	709	0.12436	757	0.02612		
518	0.22231	500	0.20898	014	0.18981	602	0.1055	710	0.12233	758	0.0251		
519	0.22224	567	0.20798	015	0.18978	003	0.16847	711	0.12031	759	0.02308		
520	0.22218	568	0.20795	010	0.18976	004	0.16845	712	0.11828	760	0.02206		
521	0.22211	569	0.20793	617	0.18873	005	6.16843	713	0.11525	761	0.02004		
522	0.22204	570	0.20691	018	0.18871	000	0.16741	714	0.11322	762	0.01902		
523	0.22096	571	0.20589	619	0.18868	667	0.16738	715	0.11119	763	0.018		
524	0.22089	572	0.20687	020	0.18760	008	0.10030	710	0.10917	764	0.01598		
525	0.22082	573	0.20585	021	0.18764	009	0.10034	717	0.10714	765	0.01496		
526	0.22074	574	0.20582	622	0.18001	670	0.10032	718	0.10411	766	0.01294		
527	0.21966	575	0.2058	623	0.18059	671	0.10529	719	0.10208	767	0.01192		
528	0.21959	576	0.20478	624	0.18557	072	0.16527	720	0.10005	768	0.0109		
529	0.21951	577	0.20475	625	0.18554	073	0.10425	721	0.09702	769	0.00888		
530	0.21843	578	0.20373	626	0.18552	674	0.16422	722	0.09499	770	0.00786		
531	0.21835	579	0.20371	627	0.1845	073	0.1632	723	0.09296	771	0.00684		
532	0.21828	580	0.20368	628	0.18448	676	0.16317	724	0.09093	772	0.00582		
533	0.2182	581	0.20266	629	0.18345	677	0.16215	725	0.0879	773	0.00479		
534	0.21713	582	0.20264	030	K 0.18343	478	0.16212	726	0.08587	774	0.00377		
535	0.21705	583	0.20261	631	0.1824	679	0.1611	727	0.08384	775	0.00275		

Lampiran	6.	Data	Tabel	Per	hitungan	Persentasi	Fotodegra	idasi
	~.	_						

			Hg+UV			
	0	30	60	90	120	150
Et	menit	menit	menit	menit	menit	menit
0.39	1.66	1.4	1.34	1.28	1.3	1.32
%Degradasi	0.00	15.66	19.28	22.89	21.69	20.48

	0	90	120	150							
Et	menit	menit	menit	menit	menit	menit					
0.39	1.66	1.3	1.2	1.18	1.23	1.24					
%Degradasi	0.00	21.69	2 <mark>7.</mark> 71	28 <mark>.9</mark> 2	25.90	25.30					

جا معة الرانرك

AR-RANIRY

Keterangan:

- : Nanopartikel NiFe₂O₄ : Limbah Merkuri NP
- Hg UV : Sinar UV

Lampiran 7. Dokumentasi Penelitian

