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ARTICLE INFO ABSTRACT

. g For the first time, an earthguake swarm occurred from April to August
Article H | 2021 in Cake Toba (Indonesia), the world's largest caldera lake. Although the earthguakes were located in
Received une 2022 a volcanic environment, the swarm activities could also be related to tectonic activities on the Sumatran
Revised 07 September 2022 fault. The swarm activities occurred at shallow depths and may influence the ground surface condition in

which soil or rock below the subsurface can amplify the shaking The research objective was to investigate

the characteristics of the @Mhquake swarm in the Toba Caldera from the spectrum of the earthquake

waveforms, site frequency, and horizontal-to-vertical ratio of sites.

Keywords: METHODSE& spectra of very closely located swarm and nonswarm earthguakes were analyzed to
d
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Earthquake investigate ifferences between both types of seismic events. The seismic spectral ratio of horizontal-
o over-vertical components was applied to calculate the spectrum in the active swarm regifigifrom all newly

Seismic installed seismic sensors. The root mean square was applied to average the amplitude of the horizontal

Spectral waveform compam.Th en, the values of the horizontal-to-vertical ratios were obtained by comparing the average

Swarm values of the horizontal and vertical components.

Volcanic The microtremor study showed a more complete spectrum waveform from the low-to-

. high frequency of a non swarm earthquake, while the swarm earthquakes generated high-frequency
Vulne rability seismograms. From the combination values of natural site frequencies and the horizontal-to-vertical ratios,
the Toba emvironment can be classified into ﬁve@rs: 1) Samosir—Hasinggaan, Il) Samosir—Parapat, [1l)
Silimapuluh, I'v) Balige—Paropo, and ) Panjaitan. Samosir Island located inthe middle of the Toba Caldera
has the highest frequency and amplification, which are divided into two clusters.

Cluster I, with high amplification corresponding to the earthquake intensity, was felt by
people in northern Samosir, Cluster 1l is located in the southern part of Samaosir Island. Cluster |1l features
moderate values of amplification and seismic vulnerability and therefore needs attention before future
infrastructure development. Cluster IV, located in the southernand northern regions with high amplification
and vulnerability, is associated with the Quaternary eruption. Cluster V, situated in northeastern Toba, has
the lowest amplification and vulnerability compared to other clusters. The microtremor results provide

DOk 10.22034/gjesm.2023.02.03  gocd correlation with the geology in the volcanic ervironment of the Toba region.
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A

INTRODUCTION

From April to August 2021, the local population
was surprised by swarm activity that occurred in Lake
Toba and its surrounding regions, as shown in Fig. 1.
This swarm activity raises the questi f its cause.
Swarm activity can be either related to the movement
of magma or hydrothermal fluids in a wvolcanic
environment (Hayashiand Morita 2003) orcontinuous
slips along preexisting faultaused by stress changes
(Gualandi et al. 2017). The cause of the Toba
earthquake swarn‘?‘n ains unclear. A simple method
for understanding the cause of an earthquake swarm
is assessing and comparing the waveform spectra of
swarm and nonswarm earthquakes. Understanding
the cause of swarm earthquakes is important so that
a population or government can take appropriate
mitigating action to reduce the future possible risks.
Meanwhile, the strong shaking of 2-3 MMI caused
by an earthquake swarm with magnitude of M ~3.0
created public concern about potential damage to
Lake Toba and its sur dings. Shaking can be also
caused by nonswarm earthquakes, such as the 2004
Indian Ocean earthquake with an M of 9.0 and the
2005 Nias earthquake with an M of 8.5 that were
strongly felt at Toba Lake, while inland destructive
earthquakes emanate from the Sumatrafa stem.

The inland earthquakes are distributed along the
Sumatra fault system (Sieh and Natawidjaja 2000},
including the Renun fault and the Toru fault as the
closest active faults to the Toba region (Muksin et
al.,, 2013, 2014). Both faults have generated major
earthquakes near the Toba region accompanied by
massive damage (Pasari et al, 2021). Several major
earthquakes occurred along the Renun segment in
1916 and 1921 with M~7, while the Toru fault has
not generated a major earthquake larger than M 6.5
(Muksin et al, 2014; Hurukawa 2014). The largest
earthquake from the Toru fault occurred in 1984 (M
6.4) and caused serious damage and loss in the city of
Tarutung (Ryberg et al., 2016; Pasari et al., 2021). The
most recent earthquakes on the Toru fault occurred
along the Sarulla Basin in 2008 (M 6), 2011 (M 5.5)
(Muksin et al., 2013) and 2020 (M 5.4). Further,
several major earthquakes were also felt in Toba,
such as the doublet earthquake in 1926 (M 6.5 and
M 6.8) and 2007 (M~6) that occurred on the Suliki
and Sumani fault segments (Daryono et al,, 2012). In
the last decade, no major events have been recorded
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near Toba, but the swarm activities suggest the
patential for an unknown local tectonic system inside
Toba that can generate a strong shaking. Among the
swarm events, three earthquakes (M~3) with an MMI
of 2-3 were strongly felt by the local population but
without severe damage. Therefore, mitigation plans
to anticipate either the wvolcanic or the tectonic
impact in Toba should be prioritized because the
region is highly populated and considered the most
popular tourist destination in Sumatra. Several
studies have been undertaken to highlight the
environmental conm)n of Toba, involving geological
modeling (Chesner et al., 2008), tomography imaging
(Koulakov et al., 2010; Koulakov et al 16), water
pollution (Soeprobowati 2015), and the impact of
climate change on the water level in Toba (Irwandi
et al., 2021). Although the Toba region is seismically
active from tectonic and (possible) volcanic activities,
no study has been conducted on its environmental
vulnerability, particularly to seismic activities and
microzona . In May 2021, a seismic survey was
conducted to assess the seismic amplification and
the vulnerability level of e Toba. Seismic records
can be used to study the horizontal-to-vertical
spectral ratio (HVSR) and natural frequency based on
microtremor data to derive the seismic vulnerability
of the Toba region. Microtremor HVSR has been
widely applied to assess the potential damage caused
by earthquakes by using specific parameters such
as seismic amplification and natumrequency that
relate to the geological condition (Goda et al., 2015;
Parker et al,, 2015). Locations with possible damage
during earthquakes are categorized as areas with low
dominant frequencies (Nakamura 2009). Microtremor
HVSRisone of theleast expensive methodsandiseasy
to operate where areas are inaccessible. The HVSR
result is recommended for soon assessing a detailed
soil cluster and its projected effect. Furthermore, the
results can also be used to study the probabilistic
seismic hazards to help diminish the potential losses
in Toba. This study aimsto investigate the vulnerabil ity
after swarm phenomena in a specific cluster in Toba.
Another research objective is to define the possible
cause of the swarm earthquake from different swarm
and nonswarm earthquake spectra recorded by the
same seismic stations. This seismic experiment was
performed in Toba and its surroundings in Indonesia
from April to May 2021.
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part of Sumatra features active subduction with a geodetic Sllp rate of 5-6 cm/yr and the Sumatra fault system with active volcanoes. The
red square is the boundary area located in Lake Toba and its surroundings. (c) The study area in Lake Toba and its surroundings and the
observation points from a temporary sensor (blue triangle) and a permanent sensor (red triangle).

Geology of the study area

Caused by a supereruption 74,000 yr B.P, the
Toba caldera is one of Earth’s many complex volcanic
systems. The Toba volcano has erupted four times
since the Quarternary, maka large depression
area in northern Sumatra (Chesner et al., 1991;
Geethanjali et al., 2019; Chesner et al, 2020). As
aforementioned, it is the largest of calderas, and the
current condition of the complex volcanic system

is influenced g the youngest Toba eruption that
removed 2,800 km?® of dense-rock-equivalent of
rhyolitic magma at 74,000 yr B.P. (Chesner et al,,
2020; Pearce et al., 2020). The young Toba tuff (YTT)
(Fig. 2) was formed during the last eruption of the
Toba volcano in the Late Pleistocene as a large area
comprising pyroclastic material (Chesner and Luhr
2010; Chesner 2012). Eruption ash is detected at many
locations in South Asia by paleoclimate studies, with
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the results indicaﬁnaw escalation of eruptions. The
ash is composed of middle Toba tuff (MTT) (504 ka),
old Toba tuff (OTT) ka), and Haranggaol Dacite
tuff (1.2 Ma) (Knight et al., 1986; Chesner et al., 1991)
from previous eruptions. The YTT eruption removed
a global mass of ash and various gases (Sarma et al.,
2018) that make a paleoclimate ph enon with
acid rain (Chesner and Luhr, 2010), resulting in the
devastation of vegetation and living populations
(Pearce et al., 2020).

Geologically, the Toba tuff has special
characteristics comprising the subsurface condition
with low seismic velocity (Vs). Stankiewicz et al.
(2010) found low Vs surroundin Toba caldera.
Low Vs can be associated with the presence of a
magma chamber beneath the caldera, while at
shallow depths, low Vs can be also interpreted as
soft soil or rock (Asnawi et al., 2022) compared to the
surrounding region. A low Vs value can also cause high
seismic amplification andis subsequently classified as
high seismic vulnerability. Therefore, an investigation
of seismic amplification and vulnerability in the Toba
region is considered essential.

Microtremor acquisition

Microtremors were measured using two types
of seismometers. The first type was a portable
nodal seismic sensor used to record microtremors
at 27 sites, and the second type was a broadband
permanent seismic sensor used to record 9 sites
(Fig. 2). The portable seismic sensor with a Magseis
Fairfield nodal array was applied using three
geographical components with a corner frequency of
5 Hz, a 24-bit ADC, and the ability to record with a
200 sps continuous reading. The observation location
was set by a grid space of 10-30 km depending
on the access to the site, with the recording time
length at each site set at 45-60 min. The permanent
station was equipped with a Nanometrics broadband
seismometer witE sensitivity of 750 V/m + 0.5%
and operated by the Meteorology, Climatology, and
Geophysics Agency (BMKG, Indonesia) to record
the seismic activities in Sumatra. The sampling rate
from the permanent seismic station was set to 40 sps
with an effective resolution of 22 bits. The recording
data of the portable and permanent seismic sensors
were gathered at night to reduce the transient noise
from human and machine activities. The seismic

waveform was then used to calculate parameters
such as the amplification and dominant frequency
and subsequently to derive the seismic vulnerability.

HVSR microtremor processing

The HVSR is globally applied to assess the
vulnerability level of a seismically active environment.
Nakamura (2009) first developed the method with a
single seismic sensor. The amplitude in the vertical
shaking value is normally stable, while the amplitude
in the horizontal direction is dominantly influenced
by the soil subsurface condition that may receive a
substantial amplification effect (Nakamura, 2009).
Assuming the H/V as the frequency function that
corresponds to the site characteristic, Nakamura
(2009) nd that the local effect can be measured
using the spectral ratio of horizontal-over-vertical
components using Eq. 1 (Nakamura, 2009).

H_ NS + EW’

v - WV (1)

The root mean square was applied to average the
NS and EW the representative of the horizontal
components. The average of the horizorl amplitude
was divided by the vertical amplitude to obtain the
average H/V spectrum. From the H/V spectrum, the
dominant frequency and period can be obtained
at the H/V peak, which is associated wi eismic
amplification. The dominant frequency Is closely
related to the lithological conditions and thickness
of the subsurface. The H/V spectrum is related to
the rock density. The amplification value is large for
areas composed of low-density rocks or soil. Seismic
surface waves propagate slowly in soft sediments,
and ground shaking can be amplified and thereby
cause severe damage. The seismic wvulnerability
index {Kg} is calculated by dividing the square of the
amplification with the dominant frequency using Eq.
2 (Nakamura, 2009).

Al
K =2
« = F (2)

The I{g value can be used to categorize the
subsurface soil ar'lualitativureh,'r estimate possible
damage areas (Tun et al,, 2016; Seivane et al., 2022).
Some studies have applied the result of I(g to assess
an earthquake-prone area for earthquake mitigation
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Fig. 2: {a) The seismicity map of the Toba area maps the swarm activities mostly located at Samesir Island and distributed in the NW=SE

direction parallel with the Sumatra fault system (Chesner 2012). The seismometer for recording the seismic waveforms is divided into two

types, temporary (purple triangle) and permanent (red triangle). (b) The local geological m
dominant geological unit. The three eruptions make a different rock age with old Teba tuffs

Toba features the lake sediments as the
)—840 ka, middle Toba tuffs (MTT)—500

ka, and young Toba tuffs (YTT)=74 ka.

plans (Boore 2004; Claprood m:f., 2014; Manzo et
al., 2022; Jiang et al., 2022). This study is the first on
seismic vulnerability based on swarm earthquakes in
the Toba region.

RESULTS AND DISCUSSION

Example result microtremor processing are
shown in Fig. 3. A band pass filter with a range of
0.1-10 Hz was applied to the seismic waveform. The
filtered waveform was segmented into several specific

windows, as shown in Fig. 3a, and then a fast Fourier
transform was applied to all accepted windows to
transform the time domain data into the frequency
domain (spectra). An STA/LTA antitriggering with a
threshold range of 0.1-0.5 s was applied to exclude
the transient noise from further analysis. After the
transient effect was reduced, a 5% cosine taper
was used to improve the spectrum quality of the
frequency domain.

The examples of waveforms with spectrograms
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Fig. 3: (a) Example recording of the vertical component in 2100 s at site T208 and the spectrogram with a frequency range of 0-20 Hz. (b)
The selected windowing is marked by a frequency of <5 Hz, while the transient noise is marked by a sudden peak. (b) Example of the H/V
graph results from 1A-555I as the permanent sensor and T2_08 and T1_04 as the temporary sensor.

(Fig. 3) show the quality of the seismic records. The
selected waveform ranged from 1 to 5 Hz, while the
transient noise shows a sudden peak in the high-

uency range. The three example results (IA-SSSI
in the eastern part of the study area and T2_08 and
T1 04 at Samosir Island) show different characters
of subsurface soil response. The different H/V values
for the three locations indicate variations in the site
conditions depending on the rock properties of the
area.

Analysis of swarm and non-swarm earthquakes

To propose the correct mitigation action, the
cause of the earthquake swarm either by volcanic
or tectonic activities must be investigated, which
is undertaken by examining the spectra of swarm
and nonswarm earthquake ash shown in Fig. 4. The
chosen earthquakes occurred at different times but
were located near each other. These swarm and
nonswarm earthquakes were recorded by the same
station and then the spectrum characteristics of the
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seismic waveforms from both earthquakes were
analyzed.

The swarm recording shows high-frequency
content larger than 10 Hz, which may be associated
with possible hydrothermal fluid migration (Horton,
2012; Ross and Cochran, 2021). An earthquake
swarm can also occur along the preexisting fault
triggered by stress changes, caused by dike intrusion
from the upper-crust layer. From the distinction of
waveform frequencies, the cause of the intensity felt
from the earthquake swarm in Toba was assumed
to be a possible large sediment layer beneath the
subsurface. A similar study determined the high-
frequency content from a fluid-driven earthquake
swarm in a Yellowstone caldera lake (Shelly et al.,
2013). Based on that study, the comparisons from
some stations must be manually checked, as shown
in Fig. 5.

The example recordings from different stations
show the possible amplification effect beneath
sensors T110 and T203. The waveforms from both
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Fig. 4: (a) Example recordings of nonswarm and (b) swarm earthquakes. (c) Example spectrograms and power spectral densities (PSDs) of
nonswarm (BOTTOM LEF and swarm (BOTTOM RIGHT) earthquakes. The spectrogram shows that the swarm earthquake has more high-fre-
quency content than the nonswarm earthguake.

stations show a noise artifact that can be associated
with the subsurface sediment. The spectrogram
from four stations also shows T110 and T203 with
saturated PSD influenced by the sediment subsurface.
All sensors were manually inspected to assess the
waveform quality that can be used to measure the
possible site effect and supportae separation of
clusters based on the H/V value in the study area.
The waveform spectrum of the swarm earthquake
recorded by some stations in Fig. 5 follows the
characteristics of the natural frequency recorded at
each site. The natural frequency and H/V value at
each measurement point having been obtained, the
effect of the swarm earthquake in the study area
can be investigated as the environmental conditions
supporting soil or rock. In general, stations located in
a region with high H/V will record high amplitude at
the natural frequency.

Interpretation of HVSR results

After all results were collected, the microtremor
parameters such as frequency and amplification were
compiled tointerpret the condition of the subsurface
soil in the study area. The maps of the parameters
of dominant frequency and period, the H/V values,
and the vulnerability index are provided in Fig. 6.
High dominant frequencies were recomﬁ in Samosir
Island, while low frequencies were located in the
northern and southern parts outside Toba Lake (Fig.
6). In contrast to dominant frequencies, low dominant
periods were observed along the Sumatra faults and
outside Samosir Island (Fig. 6). TPPEgamplification
obtained from the vertical axis of the peak of the
H/V curve shows the highest amplification in Samosir
Island, which can be related to the earthquake
intensity felt by the local population (Maresca et al.,
2018; Alamri et al., 2020).
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Soil vulnerability in active swarm region
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Fig. 5: (a) Example recording of two swarm events in the four sensors. The T110 and T203 stations show noise artifacts that can be associat-

ed with the subsurface condition. (b) The spectrogram from four stations also shows T110 and T203 with saturated P5D that can be related

to the sediment subsurface. (c) The Fourier transform graph from all recordings highlights that T104 and T107 have higher amplitude factors
than T110 and T203 (c).
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Fig. 6: (a) Spatial interpolation results of the HVSR result in dominant frequency, (b} dominant period, (c) amplification, and (d) vulnerability.
e} The heat map graphic explains the relationship between microtremor results and the correlation to all parameters.

Fig. 6(a—d) shows the map of dominant frequency
and period as well as the seismic amplification and
vulnerability. The seismic vulnerability I-(g is highest
mostly in the northern part of Samosir Island and
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lowest along the Renun segment of the Sumatra fault
segmentation. Then, all seismic parameters, including
dominant frequency, amplification, and seismic
vulnerability, were spatially grouped into a specific
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cluster. The relationship among all parameters (Fig.
6e) shows a linear correlation between amplification
and vulnerability with a correlation value of 0.89
and amplification and frequency with a correlation
value of 0.82. To examine the clusters, the seismic
parameters were interpreted based on the geological
condition and swarm zone mostly located in Samosir
Island. Here, the low dominant frequency in the
study area might be associated with the lithological
condition that is composed of thick volcanic sediment
layers in the upper subsurface, while the low
frequency could be related to the solid rock structure.
In general, the result of the dominant frequency due
to the Rayleigh waves has a long period content that
may connect with the lithological condition in which

a thick layer lies beneath the sediments (Stanko et al.
2017; Forte et al. 2019). On the basis of the dominant
frequency, the five clusters (Fig. 7) are Cluster | in
northern Samosir Island and Hasinggaan, Cluster Il
in southern Samosir Island and Parapat, Cluster lll
in Silimapuluh, Cluster |V in Balige and Paropo, and
Cluster V in Panjaitan.

Cluster I (Samosir Island - Hasinggaan)

Cluster | is located in northern Samosir Island
and the Hasinggaan region (Fig. 7). Samosir Island
is composed dominantly of lake sediment and
therefore most stations recorded high amplification
and frequency. The lake sediment may influence the
amplification of the seismic waveform due to the
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Fig. 7: (a) Clusters of zonation derived from the combination of dominant freguency and amplification (A) in the Toba area. (b) The area is
divided into five clusters: Cluster | in northern Samosir Island and Hasinggaan, Cluster Il in southern Samosir Island and Parapat, Cluster 11l
in Silimapuluh, Cluster IV in Balige and Paropo, and Cluster V in Panjaitan. (c) Swarm earthquake location in the Toba area.
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weak soil associated with volcanic deposits (Boore
2004; Claprood et al., 2012). The amplification is
relevant for the report on the earthquake felt by the
local population in the central and northern parts of
Samosir Island. Most people in the north of Samosir
Island reported higher shaking compared with the
southern part, as shown in Fig. 5(a). On the other
hand, the dominant frequency ranges in Cluster |
have the highest values, being between 7 and 8 Hz.
The lake sediment is interpreted to have a thin layer,
while the rock formation may have a thick layer below
the subsurface. With the highest frequency and
amplification parameters, Cluster | has a vulnerability
value I<g of 8-12.

Cluster I (Samosir Island - Parapat)

Different subsurface soil characteristics divide
Samosir Island into two clusters, Cluster | in the
northern part and Cluster Il in the southern part.
The southern part of Samosir—Parapat has a slightly
lower dominant frequency, with a range of 5-7 Hz.
Geologically, the rock formation in the southern part
of Lake Toba is older than that in the northern part,
and it makes the sediment layer thicker. The OTT
formation is the first quartz-bearing rock that was
erupted, and this event created the Porsea caldera
(Chesner et al. 2008). The deeper sediment layer
makes a lower natural frequency range than the
northern part. The Parapat region has lower seismic
parameters, but both regions have similar values at
the vulnerability level.

Cluster Il (Silimapuluh)

The Silimapuluh region is categorized as Cluster
Il with a moderate amplification value and natural
frequency. Cluster lll is located in the southwestern
part of YTT. The rock structure can be found along
the Silimapuluh region. Cluster Ill has moderate
parameters with a dominant frequency of 4-6 Hz, a
dominant period of 0.2-0.3 s, an amplification of 5-6,
and a seismic vulnerability I(g of 6-9. However, the
moderate vulnerability level needs more attention
due to the active fault in the western part. The
right lateral Renun fault is suggested to have a slip
rate of ~2 cm/yr. Furthermore, future studies must
be conducted with more observation points in the
western part of Cluster Il and covering the Renun
fault lineation to prepare a mitigation plan based on
active faults near Toba.

Cluster IV {Parop Balige)
Cluster IV is located in the southern and northern

parts of Lake Toba outside Samosir Island and is also
constituted by OTT. The Quaternary eruption created
the caldera in Balige. Cluster IV has a dominant
frequencyrange of 3-4 Hz, the dominant period being
~0.3 sin Balige and~0.4 sin Paropo, while the seismic
amplification is less than 4 in Balige and greater than
4 in Paropo. The seismic vulnerability is classified
as high with a seismic vulnerability I(g of 6-9 for the
Balige and Paropo areas. Similar seismic parameters
in the north and south indicate that the subsurface
soil is mostly identical and the soil is formed by OTT
from the Quaternary eruption. Cluster IV is located
outside the swarm zone and Samosir Island, but it
still needs a mitigation plan to reduce the effect of
earthquake-derived shaking.

Cluster V' (P jtan)

Cluster Vislocatedin the northeastern part of Lake
Toba, namely, in the Panjaitan region. Cluster V has a
lower parameter than other clusters. The dominant
frequency in the Panjaitan Cluster is 3—4 Hz, with an
amplification of 5-6 and a seismic vulnerability I(g of
3-6. The population in the Panjaitan region did not
report any shaking caused by the swarm earthquake
because Panjaintan is far from the swarm center. The
subsurface of Cluster V is mostly composed of YTT,
as shown in the geological map (Fig. 2). On the basis
of a lower frequency, the tuff deposit in Cluster V
may indicate a larger layer in the upper subsurface
compared to other clusters. However, Cluster V also
needs a mitigation plan to anticipate the potential
shaking derived from a swarm earthquake.

The swarm earthquake in the Toba region
has changed the seismicity distribution that was
distributed northwest—southeast in Samosir Island.
The swarm earthquake can be considered an
important event because of its shallow depth and
repeated shaking duration of approximately 2-3
MMI. Therefore, a microtremor study was conducted
to ascertain the previously unknown soil propertiesin
Toba and the surrounding r . The novelty of five
specific clusters was found based on the dominant
frequency, seismic amplification, and vulnerability
recorded by seismic temporary sensors. Cluster | is
located in northern Samosir Island and in Hasinggaan




and is dominantly composed of lake sediment and
characterized by high amplification and frequency.
The amplification is relevant for the report about
shaking felt by the local population in central and
narthern Samosir Island. The dominant frequency
range in Cluster | has the highest values of 7-8 Hz
from the lake sediment that may have a thin layer
below the subsurface that produces the highest
vulnerability index. The characteristics of Cluster
Il in southern Samosir Island are similar to those of
Cluster |. The rock formation in the southern part of
Lake Toba is older than that in the northern part, and
it makes the sediment layer deaer. The range of the
dominant frequency is lower In the southern part
of Samosir Island than in the northern part, which
correlates with the thicker sedimentary layer in the
north. Cluster Ill (Silimapuluh) region has moderate
amplification and vulnerability in the southwestern
part of YTT and needs attention because of several

jor earthquakes in the last decade. Cluster IV is
%ted in the southern and northern parts of Lake
Toba and also the OTT location. The parameters in
Cluster IV have a dominant frequency range of 3—4
Hz, a dominant period of ~0.3 s in Balige and ~0.4
s in Paropo, an amplification of <4 in Balige and >4
in Paropo, and I{g is 6=9 for both regions. Similar
parametervaluesindicatethe subsurface soil is mostly
the same, which is f@Ehed by OTT fromthe Quaternary
eruption. ClusterV is located in the northeastern part
of Lake Toba, namely, in the Panjaitan region, and it
has the lowest parameter. The dominant frequency
is 3—-4 Hz, the dominant period is <0.2 s, the
amplification is 5-6, and I{g is 3—6. Cluster V is mostly
composed of YTT as the subsurface soil, which has a
lower frequency, indicating that the deposited layer
may be larger in the upper subsurface. The clusters of
the microtremor results provide a satisfactory spatial
interpretation that is consistent with the recent
geological condition and properties in the study area.
A comprehensive study with more observation points
with shear wave velocity must be conducted in the
western part where the Sumatra fault is located.
Further, this microtremor study in the swarm zone is
the first research effort in the Toba region, which is
important for reducing the environmental risk based
on swarm earthgquake disaster mitigation and policy.
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