PENERAPAN MODEL PEMBELAJARAN PROBLEM BASED LEARNINGUNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 DARUSSALAM

Skripsi

Diajukan Oleh:

VINA YULIANDA

Mahasiswi Fakultas Tarbiyah dan Keguruan Prodi Pendidikan Matematika NIM: 261324676

FAKULTAS TARBIYAH DAN KEGURUAN JURUSAN PENDIDIKAN MATEMATIKA UNIVERSITAS ISLAM NEGERI AR-RANIRY DARUSSALAM - BANDA ACEH 2018 M / 1440 H

PENERAPAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 DARUSSALAM

SKRIPSI

Diajukan Kepada Fakultas Tarbiyah dan Keguruan (FTK) Universitas Islam Negeri Ar-Raniry Darussalam Banda Aceh Sebagai Beban Studi Untuk Memperoleh Gelar Sarjana dalam Ilmu Pendidikan Matematika

> VINA YULIANDA NIM. 261324676 Mahasiswa Fakultas Tarbiyah dan Keguruan Program Studi Pendidikan Matematika

> > Disetujui oleh:

Pembimbing I,

<u>Drs.' Munirwan Umar, M. Pd.</u> NIP. 195304181981031002 Pembimbing II,

Novi Trina Sari S.Pd.I., M.Pd

PENERAPAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 DARUSSALAM

SKRIPSI

Telah diuji oleh Panitia Ujian Munaqasyah Skripsi Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry dan Dinyatakan Lulus Serta Diterima sebagai Salah Satu Beban Studi Program Sarjana (S-1) dalam Ilmu Pendidikan Matematika

Pada Hari/Tanggal

Minggu, 10 Juni 2018
25 Ramadhan 1439 H

Panitia Ujian Munaqasyah Skripsi

Ketua,

Drs Munirwan Umar, M. Pd NIP. 195304181981031002 Sekretaris,

Khusnul Safrina, M. Pd.

Penguji I,

Novi Trina Sari S.Pd.I., M.Pd

Penguji II,

Dr. M. Daskri, M. Kes NIP. 197009291994021001

Mengetahui,

Dekan Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry s

Darussalam Banda Aceh

ND Dr. Mujiburrahman, M.Ag.

NIP. 19109082001121001

بِينَمْ النَّهُ النَّالَةُ النَّهُ النَّا اللَّهُ النَّهُ النَّالَّةُ النَّهُ النَّالَّةُ النَّالَّةُ النَّالَّةُ النَّالَّةُ النَّالِيلَاللَّهُ النَّالِيلَّاللَّهُ النَّالَّةُ النَّالِيلَّ النَّالِيلُولَاللَّهُ النَّالَّةُ النَّالِيلَّاللَّهُ النَّالَّالَةُ النَّالَّةُ النَّالِيلُولَاللَّهُ النَّالَّةُ النَّالِيلَّ النَّالِيلُولَاللَّاللَّهُ النَّالِيلَّاللَّهُ النَّالَّاللَّهُ النَّالِيلَّاللَّهُ النَّالِيلَّاللَّهُ النَّالَّةُ النَّالَّةُ النَّالِيلَّاللَّهُ اللَّهُ اللّ

"Dan seandainyapohondibumimenjadipenadanlaut (menjaditinta) ditambahkankepadanyatujuhlaut (lagi) sesudah (keringnya), niscayatidakakanhabis-habisnya (dituliskan) kalimat Allah, sesungguhnya Allah Maha Perkasa LagiMahabijaksana". (QS. Lukman: 27)

Ya Allah . . . sepercikilmutelahengkaukaruniakankepadaku

Akuhanyamampubersyukurdantafakurkepada mu

Ya Rabbi . . . sujudku Kepada Mu mengharapsemua di hariesok

RahmaddanRidha Mu akanmenyertaideraplangkahku

Langkah demi langkahtelahkutempuh

Sukadukadansegalarintangankuhadapidengantegar

Kesusahandanketakutantelahkulalui

Dengantetapmengingatdanmengharaplindungan Mu

Akuakanterusmelangkah . . .

Demi kasihsayang yang telahdiberikan, demi ilmu yang telahtersirat demi do'a yang terucap, demi air matadankeringat yang telahmengalirsemuatakkankusia-siakan

Kankuraihimpian yang belumterwujud demi kebahagiaan orang-orang yang kusayangidanmenyayangikudalamhidupini

Ayahnda&Ibunda . . .

Kasihsayang mu adalahlangitbagiku

Do'a mu adalahsemangatuntukku, agar akumenjaditegardalammenghadapicobaanhidup

Tetesankeringatmuadalahcambukuntukkuterusmaju, mewujudkancita-citakudanharapanmu

Dalamdo;aseiringRidha Allah kupersembahkankaryainipadaAyandaDaruli, IbundaTuharni, jugakepada kakakku Ria Rulianita S.Kep., dan kepada adik-adikku yang ku banggakan (Rahmat Fauzan dan Rahmat fauzi). Terimakasihkuucapkankepadaseluruhkeluargaku yang telahmemberikanmotivasi yang tulusdalamsetiaplangkahperjuanganku.

Special Thanks for Nurul Amri, S.Pi. yangtelahmembantu, memotivasidan membuatkutetap semangat dalam menjalan isemuahal.

Very Big Thanks for My best Friends: Siti Munawarah, Fajar Agustina, zulfiah, Serli Ariska, Eteman-teman PMA let.13. Semoga Allah membalassetiapkebaikan yang dilakukan. Amin YaRabbal Alamin . . .

Vina Yulianda, SP.d.

ABSTRAK

Nama : Vina Yulianda NIM : 261324676

Fakultas/ Prodi : TarbiyahdanKeguruan/ PendidikanMatematika

Judul : Penerapan Model Problem Based Learninguntuk

Meningkatkan Kemampuan Pemecahan Masalah

Matematika Siswa SMP Negeri 1 Darussalam

TanggalSidang :10 Juni 2018 TebalSkripsi :206 halaman

Pembimbing I : Drs. Munirwan Umar, M.Pd. Pembimbing II : Novi Trina Sari, S.Pd.I., M.Pd.

Kata Kunci : Model *Problem Based Learning*, Kemampuan

Pemecahan Masalah

Kemampuanpemecahanmasalahmerupakansalahsatukemampuanpenting yang harusdimilikiolehsiswauntukdapatmenyelesaikanberbagaipermasalahan,

baikpermasalahanmatematikamaupunpermasalahan yang terkaitdalamkehidupan. Namun pada kenyataannya, kemampuan pemecahan masalah matematika masih tergolong rendah. Salah satu penyebabnya yaitu model pembelajaran kurang dapat mengoptimalkan berkembangnya kemampuan pemecahan masalah matematika siswa. Untuk mengatasi masalah tersebut, diterapkan model pembelajaran Problem Based Learning. Problem Based Learning dapat mengembangkan kemampuan pemecahan masalah melalui menyelesaikan masalah. Adapun rumusan masalah dari penelitian ini adalah: (1) bagaimanakahpeningkatankemampuanpemecahan masalah matematikasiswasetelahdiajarkan model pembelajaran Problem Based Learning? (2) bagaimanakemampuanpemecahan masalah matematikasiswayang diajarkandengan model pembelajaran Problem Based *Learning*lebihbaikdaripadakemampuanpemecahan matematikasiswa masalah diajarkandengan model pembelajarankonvensional SMP Negeri 1 Darussalam?. Metodepenelitian digunakanadalahquasiyang eksperimentdengandesainpretest-postest design. Populasidalampenelitianinia dalah seluruh siswakelas VIII SMP Negeri 1 Darussalam dansampelnyakelas VIII3dankelas $VIII_4$ yang Random diambildenganteknik Cluster Sampling, vaituteknikpengambilansampelsumber data denganpertimbangantertentu. yaituberdasarkanpertimbanganapabilapopulasitidakterdiridariindividu-individu, melainkanterdiridarikelompok-kelompokindividu(cluster).Pengumpulan menggunakan kemampuan pemecahan masalahmatematika. tes Hasilpenelitianmenunjukkan (1) t_{hitung} = 13,74 $dant_{tabel}$ = 1,71 atau $t_{hitung} > t_{tabel}$ sehingga terima H₁ yang disimpulkanbahwa model pembelajaran *Problem Based* Learningdapat meningkatkan kemampuan pemecahan masalah matematika siswa, (2) berdasarkan uji-t hipotesis kedua, maka diperoleh $t_{hitung} = 2,279$ dan $t_{(tabel)} =$ 1.67 atau t_(tabel)sehingga dapat disimpulkan thitung yang bahwakemampuanpemecahanmasalahmatematikasiswa diajarkandengan model pembelajaran*problem* based learning lebihbaikdaripadakemampuanpemecahanmasalahmatematikasiswa yang diajarkandengan model pembelajarankonvensionalpadamateristatistika SMP Negeri 1 Darussalam..

DAFTAR ISI

LEMBA	ARAN JUDUL
LEMB A	AR PENGESAHAN PEMBIMBING
	AR PENGESAHAN SIDANG
	AK
	PENGANTAR
	R ISI
	R TABEL.
	R LAMPIRAN
SURAT	PERNYATAAN.
BAB IP	ENDAHULUAN
	A. LatarBelakang
	B. RumusanMasalah
	C. Tujuan Penelitian
	D. ManfaatPenelitian.
	E. DefinisiOprasional
BAB II	KAJIAN TEORI
	A. Tujuan Pembelajaran Matematika di SMP/MTs
	B. Kemampuan Pemecahan Masalah
	C. Model Pembelajaran Problem Based Learning(PBL)
	D. TeoriBelajarkonstruktivisme
	E. MateriStatistika di SMP/MTs
	F. Penerapan Problem Based Learningpada Materi Statistika
	G. Penelitian yang Relevan
	H. HipotesisPenelitian
BAB II	METODE PENELITIAN
	A. RancanganPenelitian
	B. PopulasidanSampelPenelitian
	C. TeknikPengumpulan Data
	D. InstrumenPenelitian
	E. TeknikAnalisis Data
BAR IV	HASIL PENELITIAN DAN PEMBAHASAN
	A. HasilPenelitian
	B. Pembahasan
RARV	PENUTUP
DAD V	A. Kesimpulan
	B. Saran
	D Malau

DAFTAR PUSTAKA	110
LAMPIRAN-LAMPIRAN	112

DAFTAR LAMPIRAN

		Hal
Lampiran 1 :	Surat Keputusan Dosen Pembimbing Skripsi Mahasiswa dari Dekan Fakultas Tarbiyah dan Keguruan UIN AR-Raniry	96
Lampiran 2 :	Surat Mohon Izin Pengumpulan Data dari Dekan Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry	97
Lampiran 3 :	Surat Izin Mengumpulkan Data Dari Dinas	98
Lampiran 4 :	Surat Keterangan telah Melakukan Penelitian dari SMP Negeri 1 Darussalam	99
Lampiran5:	Rencana Pelaksanaan Pembelabelajara (RPP)	200
Lampran6 :	Lembar Kerja Peserta Didik (LKPD)	131
Lampiran 7 :	Soal Pretest dan Postest dan Kunci Jawaban	147
Lampiran 8:	Lembar Jawaban Siswa	160
Lampiran 9 :	LembarValidasi RPP	164
Lampiran 10 :	Lembar Validasi LKPD	168
Lampiran 11 :	LembarValidasi <i>Pretest</i>	172
Lampiran 12 :	Lembar Validasi <i>Postest</i>	176
Lampiran13:	Data Ordinal hasil <i>Pre-test</i> Kelas Kontrol dan Eksperimen	180
Lampiran 14:	Data Ordinal hasil <i>Pre-test</i> Kelas Kontrol dan Eksperimen	182
Lampiran 15:Ha	asil Konversi Skala Ordinal menjadi Interval Data	
	Menggunakan Excel	184
Lampiran 16:Ha	asil Konversi Skala Ordinal menjadi Interval Data	
	Menggunakan MSI Manual	192

Lampiran 17 :	Daftar F	200
Lampiran 18:	Daftar G	201
Lampiran 19 :	Daftar H	202
Lampiran 20 :	Daftar I	203
Lampiran 17:	Dokomentas Penelitian	204
Lampiran 18 :	Daftar Riwayat Hidup	205

DAFTAR TABEL

		Hal		
Tabel 2.1	Sintaks Problem Based Learning			
Tabel 3.1	DesainPenelitiantwo group pretest postest design			
Tabel 3.2	RubrikPenskoranTesKemampuanPemecahanMasalah			
Tabel 4.1	SaranadanPrasarana SMP Negeri 1 Darussalam			
Tabel 4.2	DistribusiJumlahSiswa(i) SMP Negeri 1 Darussalam			
Tabel 4.3	Data Guru SMP Negeri 1 Darussalam			
Tabel 4.4	Data Guru Matematika SMP Negeri 1 Darussalam	63		
Tabel 4.5	JadwalKegiatanPenelitian			
Tabel	4.6Hasil <i>Pretest</i> dan <i>Postest</i> KemampuanPemecahanMasalahSiswaKel asEksperimen			
Tabel 4.7	Hasil Penskoran Tes Awal (<i>Pretest</i>) Kemampuan Pemecahan Masalah Kelas Eksperimen			
Tabel 4.8	HasilPenskoranTesAkhir (Postest) KemampuanPemecahanMasalahKelasEksperimen	66		
Tabel 4.9	Data Total SkorTesAwaldanTesAkhirKelasEksperimen	67		
Tabel 4.10	DaftarDistribusiFrekuensiNilaiTesAwal (Pretest)KelasEksperimen			
Tabel 4.11	Uji Normalitas Sebaran <i>Pretest</i> Kelas Eksperimen	70		
Tabel 4.12	DaftarDistribusiFrekuensiNilaiTesAkhir (Postest)KelasEksperimen	72		
Tabel 4.13	UjiNormalitasSebaran <i>Postest</i> KelasEksperimen	74		
Tabel	4.14Beda NilaiTesAwal (<i>Pretest</i>) danTesAkhir (<i>Postest</i>)KelasEksperimen	76		
Tabel 4.15	SkorHasilTesAwal (Pretest) KemampuanPemecahanMasalahMatematisSiswa	79		

Tabel 4.16	SkorHasilTesAkhir (Postest) KemampuanPemecahanMasalahMatematisSiswa	
Tabel 4.17	PersentaseHasilTesAwal (<i>Pretest</i>) danTesAkhir (<i>Postest</i>) KemampuanPemecahanMasalah	80
Tabel	4.18	
Tabel 4.19	HasilPenskoranTesAwal (pretest) KemampuanPemecahanMasalahSiswaKelasKontrol	
Tabel 4.20	HasilPenskoranTesAkhir (postest) KemampuanPemecahanMasalahSiswaKelasKontrol	
Tabel 4.21	Data Total SkorTesAwaldanTesAkhirKelasKontrol	84
Tabel 4.22	DaftarDistribusiFrekuensiNilaiTesAwal (Pretest)KelasKontrol	86
Tabel 4.23	UjiNormalitasSebaran <i>Pretest</i> KelasKontrol	87
Tabel 4.24	DaftarDistribusiFrekuensiNilaiTesAkhir (Postest)KelasKontrol	90
Tabel 4.25	UjiNormalitasSebaran <i>Postest</i> KelasKontrol	91
Tabel	4.26	D 1 1' D 4

KATA PENGANTAR

Denganmengucapkanpujibesertasyukurataskehadirat Allah SWT yang selalumelimpahkanrahmatNYA. Karenaberkatrahmatdankarunia-Nyapenulisdapatmenyelesaikanskripsiinidenganjudul"Penerapan Model Pembelajaran*Problem Based Learning* untukMeningkatkanKemampuan Pemecahan Masalah Matematika Siswa SMP Negeri 1 Darussalam".sertasalawatdansalamkepadajunjungankitaNabi Muhammad SAW besertakeluargadansahabatnyasekalian.

Sebagaihamba Allah yang tidakbanyakmemilikikelebihan, penulismenyadaribahwadalampenyusunanskripsiinitidakakanmungkinselesaitanpa bantuandanmelibatkan orang-orang ahlidalambidangnyabaiksecaralangsungmaupuntidaklangsung.

Untukitupenulissampaikan rasa terimakasih yang sebesar-besarnyakepada:

- BapakDekan, PembantuDekan, sertasemuaStaf yang telahikutmembantukelancaranpenulisanskripsiini.
- BapakDrs. Munirwan Umar, M.Pd.sebagaipembimbingpertamadanIbu Novi Trina Sari, S.Pd.I., M.pd. sebagaipembimbingkedua yang telahbanyakmeluangkanwaktuuntukmembimbingpenulisdalammenyelesai kanskripsiini.
- 3. Kepadaketua Program StudiPendidikanMatematika, seluruhdosen, sertasemuastaf Program StudiPendidikanMatematika yang telahbanyakmemberimotivasidanarahandalampenyusunanskripsiini.

- 4. Bapakkepala SMP Negeri1Darussalamdanseluruhdewan guru sertapihak yang telahikutmembantusuksesnyapenelitianini.
- Semuateman-temanangkatan 2013 khususnya unit 4 yang telahmemberikan saran-saran sertabantuan moral yang sangatmembantudalampenulisanskripsiini.

Sesungguhnyapenulistidaksanggupmembalassemuakebaikandandorongans emangat yang telahbapak, ibuberikan.Semoga Allah SWT membalassemuakebaikanini.

Dengansegalakerendahanhatipenulistelahmenyelesaikankaryatulisini,namu njikamasihterdapatkelemahan, makaolehkarenaitupenulissangatmengharapkankritikdan saran yang bersifatmembangun demi kesempurnaanskripsiini.

Akhirnyaatasbantuandanbimbingansemuapihak, penulishanyadapatmendoakan agar semuaamalbaikinimendapatbalasandariallah SWT. Amin.

Darussalam, Juni 2018 Penulis,

Vina Yulianda

KEMENTRIAN AGAMA UNIVERSITAS ISLAM NEGERI AR-RANIRY FAKULTAS TARBIYAH DAN KEGURUAN (FTK) DARUSSALAM-BANDA ACEH

Telp: (0651) 755142, fask; 7553020

LEMBAR PERNYATAAN KEASLIAN KARYA ILMIAH

Yang bertanda tangan di bawah ini:

Nama

: Vina Yulianda

NIM

: 261324676

Prodi Fakultas : Pendidikan Matematika : Tarbiyah dan Keguruan

Judul Skripsi : Penerapan Model Problem Based Learning untuk Meningkatkan

Kemampuan Pemecahan Masalah Matematika Siswa SMP Negeri

1 Darussalam

Dengan ini menyatakan bahwa dalam penulisan skripsi ini, saya:

1. Tidak meggunakan ide orang lain tanpa mampu mengembangkan dan mempertanggungjawabkan.

2. Tidak melakukan plagiasi terhadap naskah orang lain.

- 3. Tidak menggunakan karya orang lain tanpa menyebutkan sumber asli atau tanpa izin pemilik karya.
- 4. Tidak memanipulasi dan memalsukan data
- 5. Mengerjakan sendiri karya ini dan mampu bertanggung jawab atas karya ini.

Bila dikemudian hari ada tuntutan dari pihak lain atas karya saya, dan telah melalui pembuktian yang dipertanggungjawabkan dan ternyata memang ditemukan bukti bahwa saya telah melanggar pernyataan ini, maka saya siap dikenai sanksi berdasarkan aturan yang berlaku di Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry Banda Aceh.

43615AEF619677150

Demikian pernyataan ini saya buat dengan sesungguhnya.

Banda Aceh, Juni 2018

Yang Menyatakan,

Vina Yulianda

261324676

BABI

PENDAHULUAN

A. Latar Belakang Masalah

Matematika merupakan salah satu pelajaran yang dipelajari pada semua tingkat pendidikan, yaitu dari sekolah dasar sampai tingkat perguruan tinggi. Hal ini dikarenakan matematika dapat digunakan secara universal dalam segala bidang kehidupan manusia. Pentingnya peranan matematika dalam kehidupan, sehingga pelajaran ini harus diajarkan pada setiap jenjang pendidikan. Untuk mengembangkan berbagai kemampuan berfikir tersebut dalam bidang matematika, maka Departemen Pendidikan Nasional (Depdiknas) 2006 menyatakan tujuan pembelajaran matematika yaitu agar siswa memiliki kemampuan "memecahkan masalah yang meliputi kemampuan memahami masalah, merancang model matematika, menjelaskan model dan menafsirkan solusi yang diperoleh."

Kurikulum 2013 juga mengemukakan bahwa tujuan pembelajaran matematika, yaitu (1) melatih cara berfkir dan menalar dalam menarik aktivitas kreatif, (3)mengembangkan kesimpulan, (2) mengembangkan kemampuan memecahkan masalah, dan **(4)** Mengembangkan kemampuanmenyampaikan informasi atau mengkomunikasikan gagasan antara lain melalui pembicaraan lisan, grafik, peta, diagram, dalam menjelaskan gagasan

¹ Zahra Chairani. *Metakognisi Siswa Dalam Pemecahan Masalah Matematika*, (Yogyakarta: Deepublish, 2016), h. 3

tersebut.²Selain itu, *National Council Teacher of Mathematics*(NCTM) juga mengemukakan bahwa tujuan pembelajaran matematika yaitu: (1) kemampuan penalaran *(reasoning)*, (2) mengembangkan kemampuan siswa dalam berkomunikasi*(communication)*, (3) kemampuan pemecahan masalah *(problem solving)*, koneksi matematika *(mathematical connections)*, kemampuan representasi matematika *(mathematical representation)*.³

Dari tujuan pembelajaran matematika di atas, terlihat bahwa salah satu aspek yang ditekankan dalam Kurikulum 2013 dan NCTM adalah meningkatkan kemampuan pemecahan masalah matematika siswa. Kemampuan pemecahan masalah matematika sangat penting. Dalam hal ini guru mempunyai peran sangat penting untuk mendorong siswa belajar secara aktif dan dapat meningkatkan pemecahan masalah matematika yang merupakan faktor penting dalam matematika. Slameto mengemukakan bahwa dalam interaksi belajar mengajar, guru harus banyak memberikan kebebasan kepada siswa, untuk menyelidiki sendiri, mengamati sendiri, belajar sendiri, mencari pemecahan masalah sendiri. Hal ini akan menimbulkan rasa tanggung jawab yang besar terhadap apa yang akan dikerjakan dan kepercayaan kepada diri sendiri, sehingga siswa tidak selalu meggantungkan diri pada orang lain.

²Firmansyah "Pentingnya Matematika dalam Kurikulum 2013", *Artikel*, 21 Agustus 2013. Diakses Pada tanggal 19 Maret 2018 dari situs: http://www.sman1subang.sch.id/hltml/index.php?id

³ Nasution Council of Teacher of Mathematic, Execitiv Summary Principles and Standards for School Matematika. Diakses pada tanggal 19 Maret 2018 dari situs: http://www.nctm.org/uploadedFiles/Standards and Positions/PSSM ExecutiveSummary.pdf

⁴Slameto, *Belajar dan Faktor-Faktor yang Mempengaruhinya*, (Jakarta: Rineka Cipta, 2003), h. 94

Namun kenyataannya pembelajaran matematika selama ini dianggap kurang relevan dengan tujuan dan karakteristik pembelajaran matematika, guru jarang melatih siswa dalam pemecahan masalah secara individu maupun kelompok dan siswa juga kurang mampu menerapkan konsep-konsep dalam pemecahan masalah matematika. Akibatnya kemampuan pemecahan masalah matematika siswa tidak berkembang secara optimal. Hal ini sesuai dengan berdasarkan survei yang dilakukan oleh Trends in International Mathematics and Science Study (TIMSS) terbaru yaitu tahun 2015, skor matematika Indonesia berada di peringkat ke 45 dari 50 negara. ⁵Berdasarkan hasil *Programme for* International Student Assesment (PISA) yang bertujuan menilai penguasaan pengetahuan dan keterampilan matematika siswa. Menunjukan bahwa pada tahun 2015 yang melibatkan 540.000 peserta didik di 70 negara performa sains peserta didik indonesia masih tergolong rendah. Rata-rata skor pencapaian peserta didik Indonesia untuk matematika berada di peringkat 63 dari 70 negara yang dievaluasi.⁶ Hasil survei tersebut menunjukkan bahwa kemampuan matematika siswa adalah siswa indonesia pada umumnya kurang terlatih dalam menyelesaikan soal-soal dengan karakteristik seperti soa-soal pada TIMSS, yang subtansinya konstektual, menuntut penalaran, argumentasi, dan kreativitas dalam penyelesaiannya.

⁵ Puspendik, "Mengenai TIMSS", diakses pada tanggal 2 Desember 2017 dari situs (http://puspendik.kemdikbud.go.id/seminar/upload/Hasil%20Seminar%20Puspendik%202016/TI MSS%20infographic.pdf).

⁶ PISA, PISA 2015 Result in Focus, (OECD: 2016), h. 14.

Berdasarkan hasil wawancara dengan salah satu guru matematika SMPN 1 Darussalam menyatakan bahwa: "Siswa mengalami kesulitan dalam menyelesaikan pemecahan masalah pada materi Statistika, jika soal yang diberikan sedikit bervariasi maka siswa sulit mengerjakan soal tersebut". Hal ini disebabkan kurangnya menyelesaikan soal, kurangnya minat siswa dalam belajar matematika serta rendahnya kemampuan pemecahan masalah matematika siswa.⁷

Hal ini peneliti perkuat lagi dengan hasil tes kemampuan matematika siswa. Berdasarkan hasil tes tersebut siswa tidak dapat menyelesaikan masalah matematika dengan benar. Siswa kesulitan dalam menyelesaikan masalah yang diberikan karena siswakurang memahami dan menguasai materi. Hasil tes siswa menunjukkan bahwa kemampuan siswa untuk menyelesaikan soal pemecahan masalah matematika masih kurang.Kesalahan-kesalahan ini pada umumnya disebabkan oleh keterbatasan kemampuan dalam memahami konsep matematika itu sendiri. Apabila siswa tidak memahami konsep-konsep dalam suatu materi, maka siswa akan mengalami kesulitan dalam menyelesaikan soal-soal yang ada pada latihan-latihan di materi tersebut. Oleh karena siswa mengalami kesulitan, maka siswa akan mengalami kesalahan dalam menyelesaikan soal-soal pada materi tersebut. Dalam hal ini, peneliti juga melakukan wawancara kepada siswa tersebut dan diketahui bahwa siswa tersebut tidak mengetahui cara menyelesaikansoal di atas karena berbeda dengan soal-soal yang sering diberikan oleh gurunya di sekolah.

 7 Hasil Wawancara, $\ Guru\ Bidang\ Studi\ Matematika$ $SMP\ N\ 1\ Darussalam,$ Tanggal
 26 Agustus 2017 Berdasarkan fakta-fakta yang telah dikemukakan, hal ini menunjukkanbahwa kompetensi matematika terutama kemampuan pemecahan masalahmatematika siswa masih rendah. Rendahnya kemampuan pemecahan masalahmatematika siswa akan mempengaruhi kualitas belajar siswa yang akanberdampak pada rendahnya prestasi belajar siswa disekolah.

Untuk mengatasi masalah tersebut, diperlukan usaha dari guru selaku pendidik untuk menciptakan suasana belajar yang mampu meningkatkan kemampuan pemecahan masalah matematika siswa. Salah satu cara untuk meningkatkan kemampuan pemecahan masalah yaitu dengan menggunakan model pembelajaran yang mengutamakan keaktifan pada diri siswa sendiri, sehingga mampu mengembangkan kemampuannya. Selain itu diperlukan suatu model pembelajaran yang menyajikan tugas dalam bentuk masalah, siswa akan berusaha untuk mencari solusinya dengan berbagai ide-idenya. Berdasarkan hal tersebut perlu diterapkan suatu model pembelajaran yang dapat meningkatkan kemampuan siswa dalam memahami materi pelajaran dan dapat meningkatkan kemampuan pemecahan masalah matematika siswa.

Salah satu model pembelajaran yang menuntun siswa mengerjakan permasalahanadalah model *Problem Based Learning* (PBL) atau pembelajaran berdasarkan masalah.Pada pembelajaran model *Problem Based Learning* (PBL), fokus pembelajaran ada pada masalah yang dipilih sehingga peserta didik tidak saja mempelajari kosep-konsep yang berhubungan dengan masalah tersebut, tetapi juga metode untuk memecahkan masalah tersebut. Menurut pendapat Bruner, dengan berusaha mencari pemecahan masalah secara mandiri akan memberikan

suatu pengalaman konkret. Dengan pengalaman tersebut dapat digunakan untuk memecahkan masalah serupa, karena hal tersebut memberikan makna tersendiri bagi peserta didik.⁸

Pada pembelajaran PBL siswa dituntut untuk melakukan pemecahan masalah-masalah yang disajikan dengan cara menggali informasi sebanyakbanyaknya. Pengalaman ini sangat diperlukan dalam kehidupan sehari-hari dimana berkembangnya pola pikir dan pola kerja seseorang bergantung pada bagaimana dia membelajarkan dirinya. Pada intinya pembelajaran PBL merupakan suatu pembelajaran yang menggunakan masalah dunia nyata disajikandi awal pembelajaran. Kemudian masalah tersebut diselidiki untuk diketahui solusi dari pemecahan masalah tersebut.

Berdasarkan uraian tersebut diatas tampak jelas bahwa pembelajaran dengan model PBL dimulai dengan adanya masalah yang merupakan salah satu sintak dari PBL yaitu orientasi siswa pada masalah.Langkah-langkah penting dalam model *Problem Based Learning* (PBL) adalah : (1) Orientasi siswa terhadap masalah, (2) Mengorganisasikan siswa untuk belajar, (3) Membimbing penyelidikan individu maupun kelompok, (3) Mengembangkan dan menyajikan hasil karya, dan (5) Menganalisis dan mengevaluasi proses pemecahan masalah.

Dari tahapan pembelajaran model *Problem Based Learning* (PBL) yang telah diuraikan di atas, maka setiap langkah tersebut dapat meningkatkan kemampuan pemecahan masalah. Pada tahap pertama orientasi siswa terhadap

-

⁸Desi Indarwati, *Peningkatan Kemampuan Pemecahan Masalah MatematikaMelalui Penerapan Problem Based Learning Untuk Siswa Kelas V SD*, Jurnal riset. Pdf di akses 10 April 2017.

masalah dimana siswa pada tahap ini diharapkan terlebih dahulu harus mengetahui apa permasalahan yang terjadi. Pada tahap kedua mengorganisasikan siswa untuk belajar, dengan adanya tahap ini siswa dapat bekerja sama dalam memahami permasalah matematika. Tahap ketiga membimbing penyelidikan individu dengan kegiatan siswa melakukan penyelidikan/pemecahan masalah secara bebas maka pada saat itu siswa menggunakan keterampilan pemecahan masalahnya. Tahap keempat, mengembangkan dan menyajikan hasil karya, pada tahapan ini setelah melakukan penyelidikan terhadap masalah tersebut siswa dapat mengembangkan idenya dalam memilih dan menerapkan strategi yang digunakan yang menghasilkan sebuah pemecahan masalah. Tahap kelima menganalisis dan mengevaluasi proses pemecahan masalah setelah siswa mendapatkan strategi dalam pemecahan masalah kemudian mereka dapat mengkaji dan mengevaluasi dari proses pemecahan yang telah di terapkan.

Dengan demikian terlihat bahwa dari setiap tahap memberikan kesempatan kepada siswa untuk mengembangkan kemampuan pemecahan masalah matematisnya dikarenakan pada tahapan model *Problem Based Learning* (PBL) dapat menghantarkan siswa secara mandiri untuk terbiasa dalam mengidentifikasi, membuat model matematika, dan mencari penyelesaian masalah. Sehingga dengan itu, kemampuan pemecahan masalah siswa juga ikut terlatih. Sehubungan dengan uraian di atas, maka model pembelajaran *Problem Based Learning* (PBL) dianggap mampu untuk meningkatkan kemampuan pemecahan masalah peserta didik dalam pelajaran matematika.

Problem Based Learning (PBL) sangat efektif di terapkan dalam pembelajaran matematika. Peserta didik berusaha sendiri untuk mecari pemecahan masalah serta pengetahuan yang menyertainya, menghasilkan pengetahuan yang benar-benar bermakna. Karena dengan berusaha untuk mencari pemecahan masalah secara mandiri akan memberikan suatu pengalaman konkret. Pengalaman tersebut dapat digunakan untuk memecahkan permasalahan-permasalahan serupa, karena pengalaman itu memberikan makna tersendiri bagi siswa. Berdasarkan hasil penelitian Eviyanti mengungkapkan bahwa dengan model pembelajaran PBL siswa lebih aktif dan pembelajaran menjadi bermakna serta siswa dapat menyelesaikan soal pemecahan masalah dengan baik. 10

Penelitian yang dilakukan olehEvimat Yulianti menunjukkan bahwa ada pengaruh yang signifikan pada model PBL terhadapkemampuan pemecahan masalah matematika siswa kelas X SMA Negeri 2 Lubuklinggau dengan perolehan skor rata-rata sebesar 34,11. Sedangkan tingkat kemampuan pemecahan masalah matematika siswa kelas X SMA Negeri 2 Lubuklinggau setelah mengikuti pembelajaran dengan model PBL berada pada rentang 26–38 dengan kriteria tinggi. 11

_

⁹Trianto, "Model-model Pembelajaran Inovatif Berorientasi Konstruktivistik," (Jakarta: Prestasi Pustaka, 2007), h. 67

¹⁰ Cut Uliza Eviyanti, *Peningkatan Kemampuan Pemecahan Masalah Matematika Siswa melalui Penerapan Model Pembeajaran Berbasis Masalah di Kelas VII SMPN 1 Banda Aceh.* (Banda Aceh: FKIP Unsiyah, 2014), h. 58

¹¹Evimaz Yulianti, Pengaruh Model Problem Based Learning (PBL) Terhadap Kemampuan Pemecahan Masalah Matematika Siswa Kelas X Sma Negeri 2 Lubuklinggau.

Berdasarkan uraian diatas, penulis tertarik melakukan penelitian yangberjudul"Penerapan Model Pembelajaran Problem Based Learning untuk Meningkatkan Kemampuan Pemecahan MasalahMatematikaSiswa SMP Negeri 1 Darussalam"

B. Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan di atas, yang menjadi rumusan masalah dalam penelitian iniadalah :

- 1. Bagaimana peningkatan kemampuan pemecahan masalah matematika siswa yang di ajarkan model pembelajaran *Problem Based Learning* pada siswa SMP Negeri 1 Darussalam?
- 2. Bagaimana kemampuan pemecahan masalah matematika siswa yang diajarkan model pembelajaran *Problem Based Learning* dan kemampuan siswa yang diajarkan dengan model pembelajaran konvensional SMP Negeri 1 Darussalam?

C. Tujuan Penelitian

Berdasarkan permasalah diatas, maka tujuan dari penelitian ini adalah :

Diakses tanggal 15 Februari 2017 dari situs

- Untuk mengetahui peningkatan kemampuan pemecahan masalah matematika setelah diterapkan model pembelajaran *Problem Based* Learning.
- 3. Untuk mengetahuikemampuan pemecahan masalah matematika siswa yang diajarkan model pembelajaran *Problem Based Learning* dan kemampuan siswa yang diajarkan dengan model pembelajaran konvensional SMP Negeri 1 Darussalam

D. Manfaat Penelitian

Adapun manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

1. Manfaat Teoritis

Hasil penelitiandapat memberi informasi tentang penerapan model *Problem Based Learning* terhadap peningkatan kemampuan pemecahan masalah matematika siswa.

2. Manfaat Secara Praktis

a) Bagi Siswa

Proses pembelajaran ini dapat membantu meningkatkan kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran *Problem Based Learning*.

b) Bagi guru

Mengembangkan kemampuan guru untuk meningkatkan kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran *problem based learning*.

c) Bagi sekolah

Hasil penelitian dapat memberikan masukan atau saran dalam upaya mengembangkan suatu proses pembelajaran yang mampu meningkatkan kemampuan pemecahan masalah matematikasiswa SMP Negeri 1 Darussalam.

d) Bagi peneliti

Menambah pengetahuan untuk peneliti sendiri tentang model pembelajaran *Problem Based Learning* yang dapat mempegaruhi kemampuan pemecahan masalah matematika siswa. Serta sebagai sarana pengimplementasian metode pembelajaran yang efektif dan menyenangkan bagi siswa.

E. Definisi Operasional

Untuk menghindari kesalahpahaman terhadap istilah-istilah dalam penulisan proposal, penulis perlu menjelaskan beberapa istilah berikut:

1. Penerapan

Penerapan yang peneliti maksud dalam peneliti ini adalah kegiatan melakukan atau mempraktekkan model pembelajaran untuk meningkatkan *Problem Based Learning*untuk meningkatkan kemampuan pemecahan matematika siswa.

2. Model Pembelajaran Problem Based Learning

Problem Based Learning yang peneliti maksudkan adalah pembelajaran yang memberikan masalah kepada siswa dan diharapkan untuk menyelesaikan masalah tersebut dengan melaksanakan pembelajaran yang aktif. Sehingga pada pembelajaran ini siswa yang selalu aktif, guru hanya sebagai fasilator. Rangkaian aktifitas yang menekankan pada proses penyelesaian masalah agar siswa mengetahui cara memahami masalah dan memecahkannya sehingga memperoleh suatu pengetahuan baru. Melalui tahap (i) orientasi siswa pada masalah, (ii) mengorganisasikan siswa, (iii) membimbing penyelidikan individual atau kelompok, (iv) mengembangkan dan menyajikan hasil karya, dan (v) menganalisis dan mengevaluasi proses pemecahan masalah.

3. Model Konvensional

Model konvensional yang peneliti maksud adalah yang umum digunakan oleh guru dalam pembelajaran di sekolah. Dalm penelitian ini model pembelajaran yang sering digunakan di sekolah yaitu mode Kooperatif Tipe STAD.

4. Kemampuan Pemecahan Masalah

Kemampuan pemecahan masalah adalah kemampuan siswa dalammemecahkan soal-soal pemecahan masalah matematika dengan memperhatikantahap-tahap yang telah dikemukakan dalam menemukan jawaban. Indikator yang digunakan untukmengukur kemampuan pemecahan masalah matematika dalam penelitian iniadalahtahap-tahap yang telah

dikemukakan oleh Utari Sumarmo, yaitu: (1) siswa mampu mengidentifikasi unsur-unsur diketahui dan ditanyakan, (2) siswa mampu membuat model matematika, (3) siswa mampu memilih dan menerapkan strategi, (4) siswa mampu menjelaskan hasil dan memeriksa kebenaran hasil.

5. MateriStatistika

Statistika dalam penelitian ini adalah salah satu materi yang diajarkan pada kelas VIII SMP semester genap berdasarkan standar isi kurikulum 2013. Materi statistika yang diteliti disini yaitu pada kompetensi dasar 3.10 menganalisis data berdasarkan distribusi data, nilai rata-rata, median dan modus dari sebarang data untuk mengambil kesimpulan, membuat keputusan dan membuat prediksi.

BAB II

LANDASAN TEORI

A. Tujuan Pembelajaran Matematika di SMP/MTs

Secara umum tujuan pembelajaran adalah mencerdaskan kehidupan bangsa mengembangkan manusia indonesia seutuhnya. dan Untuk mendapatkan pembelajaran tersebut perlu dipertimbangkan sistem nilai yang terkandung dalam pancasila, sedangkan lembaga sekolah bertugas menyiapkan manusia-manusia yang mampu menghadapi tantangan yang terjadi akibat percepatan kemajuan dalam segala bidang kehidupan baik secara rasional, nasional maupun global.Matematika termasuk salah satu pembelajaran yang diajarkan di setiap jenjang pendidikan yang berguna untuk membekali siswa dengan kemampuan berfikir logis, kritis, analitis, dan sistematis. 12 Dalam lampiran Permendikbud Nomor 58 Tahun 2014 tentang Kurikulum SMP dijelaskan bahwa mata pelajaran matematika bertujuan agar siswa mendapatkan beberapa hal sebagai berikut.

1. Memahami konsep matematika, merupakan kompetensi dalam menjelaskan keterkaitan antarkonsep dan menggunakan konsep maupun algoritma, secara luwes, akurat, efisien, dan tepat, dalam pemecahan masalah. Termasuk dalam kecakapan ini adalah melakukan algoritma atau prosedur, yaitu kompetensi yang ditunjukkan saat bekerja dan menerapkan konsep-konsep matematika

¹²Eprints.uni.ac.id, "Landasan Teori", diakses pata tanggal 25 Juli 2018 dari situs Eprints.uny.ac.id/26316/2/%202.pdf.

- seperti melakukan operasi hitung, melakukan operasi aljabar, melakukan manipulasi aljabar, dan keterampilan melakukan pengukuran dan melukis/menggambarkan/merepresentasikan konsep keruangan.
- 2. Menggunakan pola sebagai dugaan dalam penyelesaian masalah, dan mampu membuat generalisasi berdasarkan fenomena atau data yang ada.
- 3. Menggunakan penalaran pada sifat, melakukan manipulasi matematika baik dalam penyederhanaan, maupun menganalisa komponen yang ada dalam pemecahan masalah dalam konteks matematika maupun di luar matematika (kehidupan nyata, ilmu, dan teknologi) yang meliputi kemampuan memahami masalah, membangun model matematika, menyelesaikan model dan menafsirkan solusi yang diperoleh termasuk dalam rangka memecahkan masalah dalam kehidupan sehari-hari (dunia nyata).
- 4. Mengkomunikasikan gagasan, penalaran serta mampu menyusun bukti matematika dengan menggunakan kalimat lengkap, simbol, tabel, diagram, atau media lain untuk memperjelas keadaan atau masalah.
- 5. Memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah.
- 6. Memiliki sikap dan perilaku yang sesuai dengan nilai-nilai dalam matematika dan pembelajarannya, seperti taat azas, konsisten, menjunjung tinggi kesepakatan, toleran, menghargai pendapat orang lain, santun, demokrasi, ulet, tangguh, kreatif, menghargai kesemestaan (konteks, lingkungan),

kerjasama, adil, jujur, teliti, cermat, bersikap luwes dan terbuka, memiliki kemauan berbagi rasa dengan orang lain.

- 7. Melakukan kegiatan-kegiatan motorik yang menggunakan pengetahuan matematika.
- 8. Menggunakan alat peraga sederhana maupun hasil teknologi untuk melakukan kegiatan-kegiatan matematika. Kecakapan atau kemampuan-kemampuan tersebut saling terkait erat, yang satu memperkuat sekaligus membutuhkan yang lain. Sekalipun tidak dikemukakan secara eksplisit, kemampuan berkomunikasi muncul dan diperlukan di berbagai kecakapan, misalnya untuk menjelaskan gagasan pada Pemahaman Konseptual, menyajikan rumusan dan penyelesaian masalah, atau mengemukakan argumen pada penalaran. 13

Berdasarkan kutipan di atas jelaslah bahwa untuk dapat mencapai tujuan pembelajaran matematika tersebut proses pembelajaran dirancang dengan berpusat pada siswa. Hal ini untuk mendorong motivasi, minat, kreativitas, inisiatif, inspirasi, kemandirian, dan semangat belajar.

_

¹³Menteri Pendidikan dan Kebudayaan Republik Indonesia, *Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 58 Tahun 2014*, Lembaga KEMENDIKBUD No. 954, 2014, h. 320.

B. Kemampuan Pemecahan Masalah

Kemampuan adalah kapasitas seorang individu untuk melakukan beragam tugas dalam suatu pekerjaan. ¹⁴Menurut Hudoyo, suatu pertanyaan akan merupakan suatu masalah hanya jika seseorang tidak mempunyai aturan/hukum tertentu yang segera dapat dipergunakan untuk menemukan jawaban pertanyaan tersebut. ¹⁵ Ruseffendi mengemukakan bahwa suatu persoalan merupakan masalah bagi seseorang: pertama, bila siswa belum mempunyai prosedur atau algoritma tertentu untuk menyelesaikannya; kedua, siswa harus mampu menyelesaikannya; dan ketiga, bila ada niat menyelesaikannya. ¹⁶

Menurut Hudojo memecahkan masalah itu merupakan aktivitas mental yang tinggi.¹⁷ Senada dengan hal itu Hardini dan Puspitasari menyatakan bahwa pemecahan masalah dipandang sebagai suatu proses untuk menemukan kombinasi dari sejumlah aturan yang dapat diterapkan dalam upaya mengatasi situasi yang baru.¹⁸ Pemecahan masalah tidak sekedar sebagai bentuk kemampuan menerapkan

¹⁴Wikipwedia Indonesia, *Ensiklopedia Bebas*, diakses pada tanggal 4 november 2015 dari situs http://id.wikipedia.org/wiki/kemampuan

¹⁵ Hudoyo, H. *Pengembangan Kurikulum dan Pembelajaran Matematika*, (Malang: Universitas Negeri Malang, 2001), hal. 162

¹⁶ Ruseffendi, E.T, *Pengantar Kepada Membantu Guru Mengembangkan Kompetensinya Dalam Pengajaran Untuk Meningkatkan CBSA*, (Bandung: Tarsito, 1998), hal. 336-337

¹⁷ Herman Hudojo, *Pengembangan Kurikulum dan Pembelajaran Matematika*, (Malang: Universitas Negeri Malang, 2003), hal. 148

¹⁸ Hardini Isriani dan Dewi Puspitasari, *Strategi Pembelajaran Terpadu (Teori, Konsep & Implementasi)*, (Yogyakarta: Familia, 2012), hal. 86

aturan-aturan yang telah dikuasai melalui kegiatan-kegiatan belajar terdahulu, melainkan lebih dari itu, merupakan proses untuk mendapatkan aturan pada tingkat yang lebih tinggi. Perlu diketahui bahwa suatu pertanyaan merupakan masalah bergantung kepada individu dan waktu. Artinya, suatu pertanyaan merupakan suatu masalah bagi seorangsiswa, tetapi mungkin bukan merupakan suatu masalah bagi siswa lain. Dengan kata lain, pertanyaan yang diharapkan kepada siswa haruslah dapat diterima oleh siswa tersebut. Jadi, pertanyaan itu harus sesuai dengan struktur kognitif siswa.

Menurut Gagne, sebagaimana dikutip dalam Suherman mengemukakan bahwa keterampilan intelektual tingkat tinggi dapat dikembangkan melalui pemecahan masalah. Pemecahan masalah merupakan tipe belajar paling tinggi dari delapan tipe yang dikemukakan oleh Gagne, yaitu (1) belajar tanda (signal learning); (2) belajar stimulus-respon (stimulus-response learning); (3) jalinan (chaining); (4) jalinan verbal (verbal chaining); (5) belajar membedakan (descrimination learning); (6) belajar konsep (concept learning); (7) belajar kaidah (rule learning); (8) pemecahan masalah (problem solving). Sebagaimana dikemukakan oleh Anni proses pemecahan masalah dilakukan dengan cara menghubungkan beberapa kaidah

_

¹⁹ Erman Suherman, *Strategi Pembelajaran Matematika Kontemporer*, (Bandung: Universitas Pendidikan Indonesia, 2003), hal. 89

sehingga membentuk kaidah yang lebih tinggi (*higher order rule*) yang seringkali dilahirkan sebagai hasil berpikir pada waktu pembelajar menghadapi masalah baru.²⁰

Kemampuan pemecahan masalah matematika peserta didik ditekankan pada berfikir tentang cara memecahkan masalah dan pemprosesan informasi matematika. Menurut Kennedy yang dikutip Mulyono Abdurrahman menyarankan "empat langkah proses pemecahan masalah, yaitu: memahami masalah, merancangpemecahan masalah, melaksanakan pemecahan masalah, dan memeriksa kembali"²¹

Kemampuan pemecahan masalah yang peneliti maksud adalah penyelesaian suatu perkara atau persoalan yang menyulitkan untuk mencapai tujuan tertentu. Pemecahan masalah dalam matematika bukanlah persoalan yang baru. Pemecahan masalah merupakan kegiatan yang sangat urgen dalam pembelajaran matematika, karena tujuan yang harus dicapai dalam pemecahan masalah dan prosedur pemecahan masalah berkaitan dengan kehidupan sehari-hari.

1. Faktor-Faktor yang Mempengaruhi Kemampuan Pemecahan Masalah

Adapun faktor-faktor yang mempengaruhi kemampuan pemecahan masalah matematika yaitu:

²¹Mulyono Abdurrahman, *Pendidikan Bagi Anak yang Berkesulitan Belajar*, (Jakarta: Rineka Cipta, 2009), hal. 21

_

²⁰ Catharina Tri Anni, *Psikologi Belajar*, (Semarang: UPT MKK UNNES, 2007), hal. 80

- a. Siswa dapat mengidentifikasi unsur-unsur yang diketahui, yang ditanyakan, dan kecukupan unsur yang diperlukan.
- b. Siswa dapat merumuskan masalah matematik atau menyusun model matematika.
- c. Siswa dapat menerapkan strategi untuk menyelesaikan berbagai masalah (sejenis dan masalah baru) dalam atau diluar matematika.
- d. Siswa dapat menjelaskan hasil sesuai permasalahan asal.
- e. Siswa dapat menggunakan matematika secara bermakna.²²

2. Indikator Kemampuan Pemecahan masalah

Menurut NCTM indikator-indikator untuk mengukur kemampuan pemecahan masalah matematika siswa meliputi:

- a. Siswa dapat mengidentifikasi unsur-unsur yang diketahui, yang ditanyakan, dan kecukupan unsur yang diperlukan.
- b. Siswa dapat merumuskan masalah matematik atau menyusun model matematika.
- c. Siswa dapat menerapkan strategi untuk menyelesaikan berbagai masalah (sejenis dan masalah baru) dalam atau diluar matematika.
- d. Siswa dapat menjelaskan hasil sesuai permasalahan asal.
- e. Siswa dapat menggunakan matematika secara bermakna.²³

Indikator pemecahan masalah matematika dalam penelitian ini adalah berdasarkan indikator menurut Polya. Adapun langkah-langkah pemecahan masalah menurut Polya, yaitu:

a. Memahami Masalah (understanding the problem)

Tanpa adanya pemahaman terhadap masalah yang diberikan, siswa tidak mungkin mampu menyelesaikan masalah tersebut dengan benar. Pada

²²Sri Wulandari Danoebroto, Faktor-Faktor Yang Berpengaruh Terhadap Kemampuan Siswa Memecahkan Masalah Matematika, 2011,(http://p4tkmatematika.org/file/Karya%20WI-14%20s.d%2016%20Okt%202011/Faktor%20dalam%20Problem%20Solving.pdf). Diakses 20 Januari 2017

²³ National Council of Teacher of Mathematics (NCTM), *Principles and Standars for School Mathematics*, (Reston, VA: NCTM, 2000), h. 209.

langkah pertama ini siswa perlu menjawab pertanyaan- pertanyaan (1) hal-hal apa yang tidak diketahui dan hal apa saja yang diketahui, (2) bagaimana kondisi data, (3) apakah data yang sudah ada sudah cukup.

b. Membuat Rencana untuk Menyelesaikan Masalah (*devising a plan*)

Pada langkah kedua ini, siswa harus dapat menentukan hubungan antara hal-hal yang diketahui dengan hal-hal yang tidak diketahui. Kemampuan merencanakan penyelesaian, baik secara tertulis atau tidak, sangat tergantung pada pengalaman siswa dalam menyelesaiakan masalah.

c. Melaksanakan Penyelesaian Soal (*carrying out the plan*)

Kemampuan siswa memahami substansi materi dan keterampilan melakukan perhitungan matematika sangat diperlukan dalam melaksanakan tahap ini.

d. Memeriksa ulang jawaban yang diperoleh (*looking back*)

Tahap ini penting dilakukan untuk mengecek apakah hasil yang diperoleh telah sesuai dengan ketentuan.²⁴

C. Model Pembelajaran Problem Based Learning (PBL)

Salah satu model pembelajaran yang dapat mengembangkan kemampuan pemecahan masalah adalah Pembelajaran Berbasis Masalah (*Problem Based Learning*). Seperti yang dikemukakan oleh Oon-Seng Tan bahwa Pembelajaran

²⁴George Polya, *How to Solve It: a New Aspect of Mathematics Method 2nd Edition*, (New Jearsey: Princeton University Press, 1973), hal. 16.

Berbasis Masalah (PBL) berfokus pada tantangan membuat peserta didikberfikir.PBL diakui sebagai pembelajaran aktif progresif dan pendekatan yang digunakan berpusat pada siswa di mana masalah tidak terstruktur (dunia nyata atau simulasi masalah) digunakan sebagai titik awal dan dasar untuk proses pembelajaran.²⁵

1. Pengertian Model Pembelajaran Berbasis Masalah (Problem Based Learning/PBL).

Problem Based Learningadalah suatu model pembelajaran yang dirancang dan dikembangkan untuk mengembangkan kemampuan peserta didik dalam memecahkan masalah. ²⁶Problem Based Learningmenghadapkan peserta didik pada suatu masalah sebelum memulai proses pembelajaran. Peserta didik dihadapkan pada suatu masalah nyata yang memacunya untuk meneliti, menguraikan, dan mencari penyelesaian. ²⁷

Pembelajaran dengan model*Problem Based Learning*dimulai dengan adanya masalah yang dapat dimunculkan oleh peserta didik ataupun guru, kemudian peserta didik memperdalam pengetahuannya tentang sesuatu yang telah diketahuinya sekaligus yang perlu diketahuinya untuk memecahkan masalah itu.

_

²⁵Oon-Seng Tan, *Enhancing Thinking Through Problem Based Learning Approaches*, (Singapore: Thomson Learning, 2004), h. 93.

²⁶H. Yatim Riyanto, paradigma baru pembelajaran . . ., h. 285.

²⁷ Rudi Hartono. Ragam Model Mengajar . . . h. 114.

Peserta didik juga dapat memilih masalah yang dianggap menarik untuk dipecahkan, sehingga ia terdorong untuk berperan aktif dalam belajar.²⁸

Masalah pada hakikatnya adalah kesenjangan antara situasi nyata dan kondisi yang diinginkan.²⁹ kesenjangan tersebut bisa dirasakan dari adanya keresahan, keluhan, kerisauan, atau kecemasan. Oleh karena itu, maka materi pelajaran atau topik tidak terbatas pada materi pelajaran yang bersumber dari buku saja, akan tetapi juga dapat bersumber dari peristiwa-peristiwa tertentu sesuai dengan kurikulum yang berlaku.³⁰

Model *Problem Based Learning* merupakan model pembelajaran dengan menghadapkan peserta didik pada permasalahan-permasalahan praktis sebagai pijakan dalam belajar atau dengan kata lain peserta didik belajar melalui permasalahan-permasalahan.³¹

PBL berfokus pada penyajian suatu permasalahan (*nyata-stimulus*) terhadap peserta didik, kemudian ia diminta mencari pemecahan masalah melalui serangkaian penelitian dan investigasi berdasarkan teori, konsep, serta prinsip yang dipelajarinya dari berbagai bidang ilmu (*multiple perspective*). Dalam hal ini,

²⁸ Siti atava rizema putra, *Desain Belajar Mengajar Kreatif Berbasis Sains*, (Jogjakarta: DIVA Press, 2013), h. 73.

²⁹ Muhammad Thobroni & Arif mustofa, *Belajar dan Pembelajaran (pengembangan wacana dan praktik pembelajran dalam pembangunan nasional)*, (Jogjakarta: Ar-ruzz Media, 2013), h. 334.

³⁰ Wina Sanjaya, *Strategi Pembelajaran Berorientasi Standar Proses Pendidikan*, (Jakarta: Kencana, 2011), h. 216.

³¹ Made Wena, Strategi Pembelajran Inovatif Kontemporer (suatu tinjauan konseptual operasional), (Jakarta, Bumi Aksara, 2009), h. 91.

permasalahan menjadi fokus, stimulus, dan pemandu proses belajar, sedangkan guru menjadi fasilitator dan pembimbing.³²

Dengan demikian, *problem based learning*dalam penelitian ini merupakan sebuah model pembelajaran yang memfokuskan siswa dalam pemecahan masalah yang disajikan guru di dalam materi pembelajaran. Jadi, siswa dituntut untuk bisa memecahkan masalah yang diberikan oleh guru yang berkaitan dengan materi pelajaran.

2. Karakteristik Model Pembelajaran Problem Based Learning

Karakteristik model pembelajaran *Problem Based Learning* adalah sebagai berikut:

- a. Permasalahan menjadi starting point dalam belajar;
- b. Permasalahan yang diangkat adalah permasalahan yang ada di dunia nyata yang tidak terstruktur;
- c. Permasalahan, menantang pengetahuan yang dimiliki oleh peserta didik.
- d. Belajar pengarahan diri menjadi hal yang utama;
- e. Pemanfaatan sumber pengetahuan yang beragam, penggunaannya, dan evaluasi sumber informasi merupakan proses yang esensial dalam PBL;
- f. Belajar adalah kolaboratif, komunikasi, dan kooperatif;
- g. Pengembangan keterampilan inquiry dan pemecahan masalah sama pentingnya dengan penguasaan isi pengetahuan untuk mencari solusi dari sebuah permasalahan; dan
- h. Keterbukaan proses dalam PBL meliputi sintesis dan integrasi dari sebuah proses belajar.³³

³²Siti Atava Arizema putra, *Desain Belajar Mengajar* . . ., h. 68-69.

³³Rusman, *Model-model Pembelajaran (mengembangkan profesionalisme guru)*, (Jakarta, rajawali pers, 2013), hal. 230.

3. Langkah-langkah Model Pembelajaran Problem Based Learning

Adapun langkah-langkah utama dalam pengelolaan *Problem Based*Learning yaitu:

a. Orientasi siswa kepada masalah

Kegiatan awal yang dilakukan dalam model ini adalah dijelaskan tujuan pembelajaran yang ingin dicapai oleh guru, menjelaskan logistik yang diperlukan, pengajuan masalah, memotivasi siswa terlibat dalam aktivitas pemecahan masalah yang dipilihnya.

b. Mengorganisasikan siswa untuk belajar

Guru membantu siswa mendefinisikan dan mengorganisasikan tugas belajar yang berhubungan dengan masalah tersebut.

c. Membimbing penyelidikan individual maupun kelompok

Guru mendorong siswa untuk mengumpulkan informasi yang sesuai, melaksanakan eksperimen, untuk mendapat penjelasan pemecahan masalah

d. Mengembangkan dan menyajikan hasil karya

Guru membantu siswa dalam merencanakan dan menyiapkan karya yang sesuai seperti laporan, video, model dan membantu mereka untuk berbagai tugas dengan kelompoknya.

e. Menganalisa dan mengevaluasi proses pemecahan masalah

Guru membantu siswa melakukan refleksi atau evaluasi terhadap penyelidikan mereka dalam proses-proses yang mereka gunakan.³⁴

Tabel 2.1: Langkah-Langkah dalam Model Problem Based Learning (PBL)

Fase	Langkah-	Aktivitas / kegiatan	Aktivitas/kegiatan
rase	langkah	Guru	Siswa
Fase1	Orientasi siswaterhadap masalah	Guru menginformasikantujuan -tujuanpembelajaran Guru mengajukanmasalahdan memintasiswauntukmen gemukakanteoridan ide yang dapatdigunakandalamme mecahkanmasalahterseb ut	Siswamencermatimas alahtersebutdanmenge mukakanteoridan ide mereka yang dapatdigunakandalam memecahkanmasalaht ersebut
Fase2	Mengorganisasi kan siswa untuk belajar	 Guru membagisiswakedalamk elompok yang bervariasi, masing-masingkelompokberangg otakan 4-5 orang Guru membimbingsiswauntuk memecahkansuatuperma salahandengancarabekerj asamasatudengan yang lainnya 	Secaraberkelompoksis wamemecahkanmasal ah yang diberikanoleh guru
Fase3	Membimbing penyelidikan individual maupun kelompok	Guru membimbingsiswasaatm elaksanakaneksperiment erhadapsuatupermasalah, siswadiarahkanuntukmel akukanpenyelidikanguna mendapatkaninformasim engenaimasalahituseperti	Siswamelakukanpeny elidikan/pemecahanm asalahsecarabebasdala mkelompoknya.

Trianto, Mendesain Model Pembelajaran Inovatif Progresif, (Jakarta: Kencana Prenada Media Group, 2009), h. 98.

		apadanbagaimanapemec ahannya	
Fase4	Mengembangka n dan menyajikan hasil karya	 Guru membimbingsiswauntuk mengembangkanhasilkar yanyadariapa yang dikerjakankedalambentu klaporanatau video Guru memintasalahseorangang gotakelompokuntukmem presentasikanhasilkerjak elompokdanmembantuji kasiswamengalamikesuli tan 	 Melaluikegiatankel ompoksiswamenya jikanhasilkaryanya Siswamempresenta sikanhasilkerjakelo mpoknya
Fase5	Menganalisis dan mengevaluasi proses pemecahan masalah	• Guru membantusiswadalampe nyelidikan yang dilakukansiswauntukme mecahkansuatumasalah agar siswatahubagaimana proses pemecahansuatupermasa lahan yang baikitusepertiapa. • Guru membantusiswamengana lisisdanmengevaluasi proses berpikirsiswatentangpem ecahanmasalah yang telahdikerjakan.	Siswamenyusunkemb alihasilpemikirandank egiatan yang dilaluipadasetiaptahap penyelesaianmasalah.

Sumber: Adaptasi dari Rusmono, *Strategi Pembelajaran Problem Based Learning Itu Perlu Untuk Meningkatkan Profesionalitas Guru.*³⁵

_

³⁵ Rusmono, *Strategi Pembelajaran Problem Based Learning Itu Perlu : Untuk Meningkatkan Profesionalitas Guru*, (Bogor : Ghalia Indonesia, 2012), h. 81.

f. Kelebihan dan Kekurangan Model Pembelajaran *Problem Based*Learning

Sebagaimana model pembelajaran lainnya, pembelajaran berbasis masalah juga mempunyai kelebihan dan kelemahan. Kelebihan pembelajaran berbasis masalah adalah:

- a. Dapat menantang kemampuan siswa serta memberikan kepuasan untuk menemukan pengetahuan baru bagi siswa.
- b. Dapat meningkatkan aktivitas pembelajaran siswa.
- c. Dapat mengembangkan kemampuan siswa untuk berfikir kritis dan mengembangkan kemampuan mereka untuk menyesuaikan dengan pengetahuan baru
- d. Dapat membantu siswa untuk mengembangkan pengetahuan barunya dan bertanggung jawab dalam pembelajaran yang mereka lakukan.
- e. Dapat membantu siswa bagaimana mentransfer pengetahuan mereka untuk memahami masalah dalam kehidupan nyata.
- f. Siswa mampu memecahkan masalah dengan suasana pembelajaran yang aktif menyenangkan,
- g. Dapat memberikan kesempatan pada peserta didik untuk mengaplikasikan pngetahuan yang mereka miliki dalam dunia nyata. 36

Di samping kelebihan-kelebihan tersebut, pembelajaran berbasis masalah juga memiliki beberapa kelemahan, diantaranya:

- a. Kapasitas siswa yang terlalu banyak menyebabkan guru kesulitan dalam melaksanakan model pembelajaran *problem based learning*
- b. Waktu yang kurang efektif atau tidak efesien.
- c. Tidak semua siswa dapat menganalisis permasalahan yang disajikan.³⁷

³⁶Wina Sanjaya, Strategi Pembelajaran Berorientasi ,...,221

³⁷Wina Sanjaya, Strategi Pembelajaran ..., hal. 224

Pada penelitian ini untuk mengatasi kelemahan pada model *problem*based learningmaka dilakukan upaya sebagai berikut:

- 1. Guru dapat membagi siswa dalam beberapa kelompok kecil sehingga semua siswa dapat berperan aktif, pembagian kelompok juga dilakukan sebelum pemelajaran berlangsung.
- 2. Guru harus disiplin menyesuaikan waktu sesuai dengan RPP, sehingga waktu tersebut cukup dalam proses pembelajaran berlangsung.
- 3. Guru harus memberikan tingkatan masalah sesuai dengan tingkat kemampuan siswa, yaitu masalah yang sederhana lalu masalah yang lebih sulit

D. Teori Belajar Konstruktivisme

Dalam perkembangannya, pembelajaran *problem based learning*dilandasi oleh teori belajar konstruktivisme. Teori-teori baru dalam psikologi pendidikan dikelompokkan dalam teori pembelajaran konstruktivisme. Konstruktivisme mempunyai akar yang kuat dalam sejarah pendidikan. Perkembangan konstruktivisme dalam belajar tidak terlepas dari usaha keras Jean Piaget dan Vygotsky. Kedua tokoh ini menekankan bahwa perubahan kognitif ke arah perkembangan terjadi ketika konsep-konsep yang sebelumnya sudah ada mulai bergeser karena ada sebuah informasi baru yang diterima melalui proses ketidakseimbangan. Teori konstruktivismeini menyatakan bahwa siswa harus menemukan sendiri dan mentransformasikan informasi kompleks, mengecek informasi baru dengan aturan-aturan lama, dan merevisinya apabila aturan-aturan itu tidak sesuai.³⁸ Bagi siswa agar

_

³⁸ Trianto. *Model-model Pembelajaran Inovatif Berorientasi Konstuktivistik*. (Jakarta: Pustaka Publisher, 2007), hal. 13

benar-benar memahami dan dapat menerapkanpengetahuan, mereka harus bekerja memecahkan masalah, menemukan segala sesuatunya sendiri, dan berusaha dengan susah payah dengan ide-idenya sendiri.³⁹

Menurut teori konstruktivisme ini, satu prinsip yang paling penting dalam psikologi pendidikan adalah bahwa guru tidak hanya sekadar memberikan pengetahuan kepada siswa. Siswa harus membangun sendiri pengetahuan di dalam benaknya. Guru dapat memberikan kemudahan untuk proses ini dengan memberi kesempatan siswa menemukan atau menerapkan ide-ide mereka sendiri dan mengajar siswa menjadi sadar dan secara sadar menggunakan strategi mereka sendiri untuk belajar.

E. Materi Statistika di SMP/MTs

Statistika adalah salah satu materi dalam matematika yang tidak lepas dari kehidupan sehari-hari. Di segala bidang matematika menggunakan statistik baik di bidang perdagangan, pengindrustrian maupun bidang lainnya. Apalagi di dunia penelitian atau riset, di manapun dilakukan, bukan saja telah mendapat manfaat yang baik dari statistik tetapi sering harus menggunakannya. Jadi statistika adalah ilmu (metode ilmiah) yang mempelajari cara-cara mengumpulkan, menyusun, menyajikan dan menganalisis data serta mengambil kesimpulan yang logis sehingga dapat

³⁹ Trianto. *Model-model Pembelajaran Inovatif* ..., hal. 107

diambil keputusan yang akurat.⁴⁰Di sekolah menengah pertama, materi statistika dipelajari di kelas VIII pada semester genap. Materi statistika yang diteliti disini yaitu pada kopetensi dasar 3.10 menganalisis data berdasarkan distribusi data, nilai ratarata, median dan modus dari sebarang data untuk mengambil kesimpulan, membuat keputusan dan membuat prediksi.

1. Pengertian data

Data adalah keterangan yang diperlukan untuk memecahkan suatu masalah atua untuk memperoleh gambaran mengenai suatu keadaan. Ada dua jenis data sebagai berikut:

a. Data kuantitatif, yaitu data yang diperoleh dari hasil pengukuran atau perhitungan dan bersifat nimerik (angka/nilai).

Contohnya: berat badan, umur, dan lain-lain.

Dan membuat suatu keputusan, data harus dikumpulkan, diolah, disajikan dan dianalsis.

 Data kualitatif, yaitu data yang diperoleh dari pengamatan sifat suatu objek dan tidak berbentuk bilangan.

 40 Abdur Rahman, $\it Matematika~untuk~Kelas~VIII,$ (Jakarta: Kementrian Pendidikan dan Kebudayaan, 2017), hal. 226

Contohnya: golongan dara, pekerjaan orang tua, dan lain-lain. 41

2. Pengumpulan data

Pada bagian metode pengumpulan data dikenalkan metode-metode pengumpulan data yaitu wawancara, angket dan observasi. Wawancara merupakan metode pengumpulan data dengan menanyakan langsung ke setiap responden. Angket merupakan metode pengumpulan data dengan menyajikan variasi pertanyaan yang mendukung topik yang diteliti. Observasi merupakan metode pengumpulan data melalui pengamatan langsung terhadap objek yang sedang diteliti. 42

3. Mengelolah data

Pada bagian pengelolahan data dikenalkan cara mengelolah data yaitu dengan menghitung mean, modus dan median. Mean merupakan nilai rata-rata yang diperoleh dengan menjumlahkan semua bagiandata dengan banyak data, modus merupakan data yang sering muncul dan median nilai tengah setelah data diurutkan. ⁴³

⁴¹Abdur Rahman, *Matematika*,..., hal. 227

⁴² Kemendikbud, *Matematika*, (Jakarta: Politeknik Negeri Media Kreatif, 2013), hal. 321

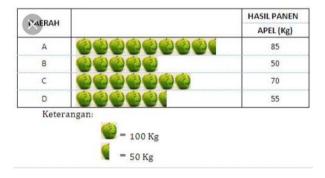
⁴³ Abdur Rahman, Matematika,..., hal. 227

a. Rata-rata (mean)

Rata-rata hitung dihitung dengan cara membagi jumlah nilai data dengan banyaknya data rata-rata hitung bisa juga disebut rataan atau rata-rata atau mean.

Menghitung rata-rata dari data tunggal

misalnya $x_1, x_2, x_3, x_4, x_6, \dots, \dots x_n$ adalah suatu data. Rata-rata


(mean data tersebut disimbolkan \bar{x} .

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_6 + \dots + x_n}{n}$$
, dengan n adalah banyaknya data, n $\neq 0$

Contoh:

Contoh:

Berapakah rata-rata hasil panen Apel pada gambar di bawah ini?

Jawab.

a. Memahami Masalah

Dik:

$$x_1 = 85$$
 $x_2 = 50$ $x_3 = 70$

Dit: Berapakah nilai rata-rata dari hasil panen Apel tersebut?

b. Merencanakan Penyelesaian

$$\overline{\chi} = \frac{x_1 + x_2 + x_3 + x_4}{n}$$
, dengan n = 4

c. Melaksanakan Rencana

$$\bar{x} = \frac{85 + 50 + 70 + 55}{4}$$

$$\bar{x} = \frac{260}{4}$$

$$\bar{x} = 65$$

d. Memeriksa Kembali Hasil yang Telah Diperoleh

$$65 = \frac{85 + x_2 + 70 + 55}{4}$$

$$65 = \frac{210 + x_2}{4}$$

$$x_2 = 260 - 210$$

$$x_2 = 50$$

Jadi, nilai rata-ratanya adalah 65

Menghitung rata-rata dari sekelompok data

Apabila f_1 adalah banyaknya data bernilai x_1 , f_2 adalah banyaknya data yang bernilai x_2 ,...., fn adalah banyaknya data bernilai x_n , maka ratarata dari seluruh data adalah:

$$\bar{\chi} = \frac{f_1 \cdot x_1 + f_2 \cdot x_2 + \dots + f_n \cdot x_n}{f_1 + f_2 + \dots + f_n}$$

Contoh:

Nilai rata-rata ujian matematika dari 39 siswa adalah 45. Jika nilai seorang siswa yang mengikuti ujian susulan di tambahkan, nilai rata-rata ujian tersebut menjadi 46. Berapakah nilai siswa yang mengikuti ujian?

Dik:

Rata-rata = 45 dari 45 orang Nilai rata-rata tersebut berubah menjadi Rata-rata=46

Dit: tentukan nilai ulangan Tomi

Rata-rata (Mean)=
$$\frac{jumlah \ nilai \ seluruh \ data}{banyak \ data}$$
$$45 = \frac{x_1 + x_2 + x_3 + ..., x_{39}}{39}, \text{ sehingga}$$

Jumlah nilai data, yakni $x_1+x_2+x_3+\dots x_{39}=1.755$. Jika nilai seorang siswa yang mengikuti ujian susulan di rambahkan adalah x_{39} , maka

7,0 =
$$\frac{x_1 + x_2 + x_3 + ..., x_{40}}{40}$$
, sehingga 46 = $\frac{1.755 + x_{39}}{40}$

$$1.840 = 1.755 + x_{39}$$

$$x_{39} = 1.840 - 1.755$$

= 85

Periksa kembali jawaban.

Rata-rata (Mean) =
$$\frac{1.755+85}{40}$$

= $\frac{1.840}{40}$

=46

Jadi, nilai ulangan Matematika Tomi tidak diikursertakan adalah 85

b. Median

Median adalah nilai data yang letaknya atau posisinya berada di tengah-tengah data yang di urutkan dari nilai terkecil sampai terbesar. Disimbolkan dengan Me.

• Menentukan median dari data tunggal

misalkan $x_1, x_2, x_3, x_4, \dots, \dots x_n$ adalah suatu data, dengan $x_1 \le$

$$x_2 \le x_3 \le x_4 \le \dots, \dots \le x_n$$

Jika data ganjil, median adalah nilai data ke $\frac{n+1}{2}$, yaitu:

$$Me = \frac{x_{n+1}}{2}$$

• Jika n genap, median adalah rata-rata dari data ke $\frac{n}{2}$ dengan data ke $\frac{n+1}{2}$, sehingga

Me =
$$\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$$

Contoh:

Misalnya suatu kelas di dalamnya terdapat 5 orang siswa yang memakai ukuran sepatu berbeda-beda, si V memakai ukuran sepatu nomor 37, si B memakai ukuran sepatu nomor 38, si H memakai ukuran sepatu nomor 40, si N memakai ukuran sepatu 39 dan si L memakai ukuran sepatu 38. Jawab.

a. Memahami Masalah

Dik:

$$x_1 = 37$$

$$x_2 = 38$$

$$x_3 = 40$$

$$x_4 = 39$$

$$x_5 = 38$$

Dit: Carilah median dari data tersebut!

b. Merencanakan Penyelesaian

Data harus diurutkan terlebih dahulu dari yang data terkecil kedata terbesar

Karena jumlah data tersebut ganjil maka menggunakan rumus:

$$Me = \frac{x_{n+1}}{2}$$

c. Melaksanakan Rencana

$$Me = \frac{x_{n+1}}{2}$$

$$Me = \frac{x_{5+1}}{2}$$

$$Me = \frac{x_6}{2}$$

$$Me = x_3$$

$$Me = 38$$

d. Memeriksa Kembali Hasil yang Telah Diperoleh

Dari nomor sepatu 37, 38, 38, 39, 40 dapat di tentukan nila tengahnya yaitu 38

Jadi, nilai rata-ratanya adalah 38

• Menentukan median dari data kelompok

Dengan rumus: Me = Tb +
$$\left[\frac{n}{2} - F\right]$$
. p

Dengan:

Me = median

Tb = tepi bawah kelas

F = frekuensi kumulatif (jumlah frekuensi) seelum kelas

median

 f_e = banyak data P = panjang kelas

Tentukan Median dari data berikut!

Nilai Ujian	Frekuensi
60 – 64	2
65 – 69	7
70 – 74	10
75 – 79	8
80 – 84	3

Jawab.

Dik: Tb =
$$70 - 0.5$$

= 69.5
 f = 10
 F = $2 + 7$
= 9
 P = 5

Dit: tentukan median

$$Me = Tb + \left[\frac{\frac{n}{2} - F}{f}\right] \cdot p$$

$$Me = 69.5 + \left[\frac{\frac{30}{2} - 9}{10}\right].5$$

$$Me = 69,5 + \left[\frac{15-9}{10}\right].5$$

Me =
$$69,5 + \left[\frac{6}{10}\right].5$$

$$Me = 69,5 + \frac{30}{10}$$

$$Me = 69,5+3$$

$$Me = 72,5$$

Jadi, median dari data tersebut adalah 72,5⁴⁴

c. Modus

Modus dari suatu data adalah nilai yang paling banyak muncul atau frekuensi tertinggi. Modus didefinisikan misalkan $x_1, x_2, x_3, \dots, x_n$ adalah suatu data, data yang paling sering muncul disebut modus, yang disimbolkan dengan Mo.

Menentukan modus dari data tunggal

Untuk menentukan modus dari data tunggal kita cukup mengurutkan data tersebut, kemudian mencari nilai data yang frekuensinya paling besar.

Contoh:

Tentukanlah modus dari data berikut

⁴⁴ Abdur Rahman, Matematika,..., hal. 234

Jawab.

Modus dari data berikut 2,3,4,2,4,5,4,2,2 adalah 2 sebab angka 2 lebih banyak muncul sebanyak 4 kali.

Menentukan modus dari dta kelompok

Dengan rumus: Mo = Tb +
$$\left[\frac{b_1}{b_1+b_2}\right]$$
. p

Dengan:

Me = modus

Tb = tepi bawah kelas modus

 b_1 = selisih frekuensi kelas modus dengan kelas sebalumnya b_2 = selisih frekuensi kelas modus dengan kelas sebalumnya

P = panjang kelas modus

Contoh:

Tentukan modus dari data berikut....!

Nilai Ujian	Frekuensi
11 – 15	4
16 - 20	16
21 – 25	12
26 – 30	8

Jawab.

Dik: Tb =
$$16 - 0.5$$

= 15.5
 b_1 = $16 - 4$
= 12
 b_2 = $16 - 12$
= 6
P = 5

Dit: tentukan modus

$$Mo = 15.5 + \left[\frac{b_1}{b_1 + b_2}\right] \cdot p$$

$$Mo = 15,5 + \left[\frac{12}{12+4}\right].5$$

$$Mo = 15.5 + \left[\frac{12}{16}\right].5$$

$$Mo = 15.5 + \frac{60}{16}$$

$$Mo = 15,5 + 3,75$$

$$Mo = 19,25$$

Jadi, modus dari data tersebut adalah 19,25⁴⁵

F. Penerapan Problem Based Learning pada Materi Statistika

Model pembelajaran *problem based learning* merupakan model pembelajaran yang autentik untuk menyusun pengetahuan mereka sendiri, mengembangkan ingkuiri dan keterampilan berfikir sehingga tujuan pembelajaran yang telah dirumuskan tecapai.

Materi statistika dapat diajarkan dengan menggunakan model problem based learning. Adapun tahapan model pembelajaran *problem based learning* pada materi statistika yaitu:

Tahap 1 Orientsi siswa pada masalah

Guru menjelaskan tujuan dari pembelajaran statistika, menjelaskan logistik yang dibutuhkan seperti cerita untuk memunculkan masalah. "pada saat upacara bendera,

_

⁴⁵ Abdur Rahman, Matematika,..., hal. 236

kita sering memperhatikan teman-teman kita, terkadang tampa sadar kita membandingkan tinggi rendah teman-teman kita dalam upacara tersebut". Namun demikian, jika kita mencoba mendata tiap tinggi siswa, pasti hasilnya akan mengacu pada suatu nilai tersebut, yaitu nilai rata-rata, median dan modus.

Tahap II Mengorganisasikan data untuk belajar

Guru mengelompokkan siswa kedalam beberapa kelompok yang heteroge, membagikan LKPD dan membantu siswa mendefinisikan dan mengorganisasikan tugas belajar yang berhubungan dengan rata-rata, median dan modus.

Tahap III Membimbing penyelidikan individu dan kelompok

Guru mendorong siswa untuk mengumpulkan informasi yang sesuai dalam menemukan cara menyelesaikan masalah yang berkaitan dengan rata-rata, median dan modus.

Tahap IV mengembangkan dan menyajikan hasil karya

Guru membantu siswa dalam merencanakan dan menyiapkan hasil karya kerja kelompok dan mempersentasikan, karyanya dapat berupa laporan atau model hasil kerja yang dikerjakan bersama-sama dalam kelompok.

Tahap V Menganalisis dan mengevaluasi proses pemecahan masalah

Guru membantu siswa untuk melakukan refleksi atau evalusi terhadap penyelidikan mereka dan proses-proses yang mereka gunakan dalam memecahkan masalah yang diberikan guru dalam bentuk LKPD.

G. Penelitian Relevan

Pada bagian ini peneliti akan memaparkan beberapa penelitian terdahulu yang berkaitan dengan penelitian yang dilakukan peneliti yang mana dipaparkan sebagaimana berikut ini:Penelitian yang dilakukan oleh oleh Noera Khalidah dengan judul Peningkatan Kemampuan Pemecahan Masalah Matematis Siswa Melalui Model Pembelajaran Berbasis Masalah pada Materi Sistem Persamaan Linear Dua Variabel di Kelas VIII MTsN Cot Gleumpang.Berdasarkan hasil analisis data dengan menggunakan uji-t pihak kanan. Menunjukkan adanya peningkatan kemampuan siswa dalam pemecahan masalah matematis dilihat dari hasil tes siswa meningkat secara individual maupun secara klasikal setelah penerapan model pembelajaran berbasis masalah. Jadi dapat disimpulkan bahwa untuk meningkatkan kemampuan pemecahan masalah matematis siswa sebaiknya menggunakan model pembelajaran berbasis masalah.

Selanjutnya hasil penelitian Meliyani dengan judul Penerapan Model PBL untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis Siswa SMK. Berdasarkan analisis data penelitian, diperoleh gambaran bahwa model pembelajaran PBL dapat meningkatkan kemampuan siswa dalam memecahkan masalah matematka pada materi pokok persamaan kuadrat, pada siklus I, 22 siswa yang tuntas (51,16%), siklus II, 37 siswa yang tuntas (86,04%), dengan peningkatan sebesar

⁴⁶Noera Khalidah, *Peningkatan Kemampuan Pemecahan Masalah Matematis Siswa Melalui Model Pembelajaran Berbasis Masalah pada Materi Sistem Persamaan Linear Dua Variabel di Kelas VIII MTsN Cot Gleumpang*, (Banda Aceh: Tarbiyah Uin Ar-Raniry, 2016), hal. 105

34,88%.⁴⁷Berdasarkan penelitian tersebut, peneliti tertarik menggunakan model PBL untuk mengetahui kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model *Problem Based Learning* dan kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensional.

H. Hipotesis Penelitian

Hipotesis adalah jawaban sementara dari masalah pnenelitian yang perlu dibuktikan penerimaannya dan penolakannya. Arikunto berpendapat "hipotesis dapat diartikan sebagai satu jawaban yang bersifat sementara terhadap permasalahan penelitian, sampai terbukti melalui data yang terkumpul". ⁴⁸Adapun yang menjadi hipotesis pada penelitian ini adalah:

- 1 Model *Problem Based Learning* (PBL) dapat meningkatan kemampuan pemecahan masalah matematika pada siswa SMP 1 Darussalam.
- 2 kemampuan pemecahan masalah matematika siswa yang diajarkan denganmodel pembelajaran *problem based learning* lebih baik daripadakemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensionalpada materi statistika SMP Negeri 1 Darussalam".

⁴⁷ Meliyani "Penerapan Model Pembelajaran Problem Based Learning untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika Siswa SMK", Skripsi, (Medan: UNIMED, 2013), h.85

⁴⁸ Suharsimi Arikunto, *Prosedur Penelitian Suatu Pendekatan Praktik*, (Jakarta: Rineka Cipta, 2013), h.110

BAB III

METODE PENELITIAN

A. Rancangan Penelitian

Penelitian ini menggunakan pendekatan kuantitatif. Penelitian kuantitatif merupakan penelitian yang mengembangkan konsep pengumpulan data, penafsiran dan penyajian data-data dalam bentuk angka-angka. ⁴⁹Penelitian ini dilakukan untuk melihat akibat dari suatu perlakuan yaitu penerapan model *problem based learning*. Adapun metode dalam penelitian ini adalah eksperimen semu (*quasi experimental*), yaitu metode eksperimenyang mendekati percobaansungguhan dimana tidak memungkinkan untuk mengontrol semua variabel yang relevan. ⁵⁰ Metode ini tidak memungkinkan peneliti melakukan pengontrolan penuh terhadap faktor lain yang mempengaruhi variabel dan kondisi eksperimen. Dalam hal ini kelompok sampel dibagi menjadi dua kelompok, yaitu kelompok eksperimen dan kelompok kontrol.

Desain yang digunakan dalam penelitian ini adalah desain*Pre*-test *post-test* control group design. Desain penelitian ini dipilih untuk mengetahui peningkatan hasil belajar matematis siswa antara kelompok eksperimen dan kelompok kontrol. Adapun desain penelitian sebagai berikut:

⁴⁹Suharsimi Arikunto, *Dasar-Dasar Evaluasi Pendidikan*, (Jakarta : Bima Aksara, 2010), h. 27

⁵⁰ Zainal Arifin, *Penelitian Pendidikan Metode dan Paradigma Baru*, (Bandung: PT Remaja Rosdakarya, 2011), h. 74-75

Tabel 3.1 Rancangan penelitian

Kelas	Tes awal	Perlakuan	Tes akhir
Eksperimen	O_1	X_1	O_2
Kontrol	O_1	X_2	O_2

Sumber: Adabtasi dari Sukardi⁵¹

Keterangan:

O₁: Tesawal(*pre-test*)

O₂: Tesakhir(*post-test*)

X₁: Perlakuandenganmenggunakan model *Problem Based Learning*

X₂: Perlakuantanpamenggunakan model *Problem Based Learning*

Variabel dalam penelitian ini adalah variabel terikat (*dependent variable*) dan variabel bebas (*Independent variable*). Yang menjadi variabel terikat dalam penelitian ini adalah Kemampuan Pemecahan Masalah peserta didik, sedangkan yang menjadi variabel bebas dalam penelitian ini adalah model pembelajaran*problem based learning*.

⁵¹ Sukardi, *Metodelogi Penelitian Pendidikan (Kompetensi dan Praktiknya)*, (Yogyakarta: Bumi Aksara, 2003), h. 186

B. Populasi dan Sampel Penelitian

Arikunto menyatakan, "populasi adalah keseluruhan subjek penelitian".⁵² Dalam penelitian ini yang menjadi populasi adalah seluruh siswa SMP Negeri 1 Darussalam. Untuk memperoleh keterangan mengenai populasi, peneliti tidak mengambil seluruh, melainkan sebagian saja yang dijadikan sampel. Sugiyono mengemukakan bahwa: "Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut".⁵³ Sedangkan sampelyang diambil dalam penelitian ini dengan menggunakan *cluster random sampling*, yaitu teknik pengambilan sampel sumber data dengan pertimbangan tertentu, yaitu berdasarkan pertimbangan apabila populasi tidak terdiri dari individu-individu, melainkan terdiri dari kelompok-kelompok individu (*cluster*).⁵⁴Sehingga peneliti mengambil sampel kelasVIII₁ dan VIII₂, kedua kelas ini dinilai homogen. Dan yang menjadi sampel kelas VIII₁ sebagai kelas eksperimen, sedangkan kelas VIII₂ sebagai kelas kontrol.

C. Teknik Pengumpulan Data

Pengumpulan data adalah cara yang dipakai untuk mengumpulkan informasi atau fakta-fakta dilapangan. Data adalah suatu bahan mentah yang jika diolah dengan

⁵² Suharsimi Arikunto, *Dasar-Dasar Evaluasi Pendidikan*,....h. 173

⁵³ Sugiyono, *Metode Penelitian Kombinasi (Mixed Methods)*, (Bandung : Alfabeta, 2012), . 120

⁵⁴ Margono, S, *Metodologi Penelitian Pendidikan*, (Jakarta: Rineka Cipta, 2007) h. 127

baik melalui berbagai analisis dapat melahirkan berbagai informasi. Dengan informasi tersebut kita dapat mengambil keputusan.⁵⁵

Dalam penelitian ini, peneliti hanya menggunakan satu teknik pengumpulan data yaitu tes tulis. Tes adalah cara yang dipergunakan atau prosedur yang ditempuh dalam rangka pengukuran dan penilaian bidang pendidikan yang berbentuk pemberian tugas (pertanyaan yang harus dijawab) atau perintah-perintah (yang harus dikerjakan) sehingga data yang diperoleh dari penelitian tersebut dapat melambangkan pengetahuan atau keterampilan siswa sebagai hasil dari kegiatan belaiar mengajar. ⁵⁶Tes dilakukan pada dua kelas, kelas kontrol dan kelas eksperimen. Masing-masing kelas akan dilakukan dua kali tes yaitu pretest dan postest yang masing-masing berbentuk essay. Pretest diberikan sebelum berlangsungnya pembelajaran yang bertujuan untuk mengetahui kemampuan pemecahan masalah matematika awal peserta didik dari kelas tersebut. Sedangkan postest diberikan setelah pembelajaran berlangsung yang bertujuan bertujuan untuk mengetahui kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran Problem Based Learning dan kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensionalSMP Negeri 1 Darussala

⁵⁵ Husaini Usaman, *Pengantar Statistika*, (Jakarta: Bumi Aksara, 2008), h.15

⁵⁶ Anas Sudijono, *Pengantar Evaluasi Pendidikan*, (Jakarta: Grafindo Persada, 2007), h. 67.

D. Instrumen Penelitian

Instrumen penelitian merupakan alat yang digunakan oleh peneliti dalam pengumpulan data agar pekerjaan yang dilakukan lebih mudah dan hasilnya lebih baik, dalam arti lebih cermat, lengkap, dan sistematis sehingga lebih mudah diolah.⁵⁷

Adapun instrumen yang penulis gunakan dalam penelitian ini adalah:

1. Perangkat Pembelajaran

Agar penelitian ini dapat berjalan dengan baik, maka disusun perangkat pembelajaran yang sesuai dengan karakteristik yang sesuai dengan karakteristik pembelajaran yang diterapkan.

Adapun perangkat pembelajaran yang diperlukan adalah:

- a. Rencana Pelaksanaan Pembelajaran (RPP) strategi pembelajaran model problem based learningdan model pembelajaran konvensional.
- b. Bahan Bacaan Siswa
- c. LKPD

2. Tes Kemampuan Pemecahan Masalah Matematika

Instrumen yang digunakan dalam penelitian ini adalah tes kemampuan pemecahan masalah matematika. Soal tes disusun dalam bentuk uraian (essay) untuk mengukur tingkat kemampuan pemecahan masalah matematika peserta

⁵⁷ Suharsimi Arikunto, *Prosedur Penelitian Suatu Pendekatan Praktek,* (Jakarta: Rineka Cipta, 2001), h. 136

didik.Sebelum digunakan, soal tes tersebut divalidasi terlebih dahulu untuk mengetahui ketepatan dan keandalan instrumen dalam mengukur aspek yang diinginkan.

Tabel 3.2 RubrikPenskoran Tes Kemampuan Pemecahan Masalah

No	Tahapan	Indikator yang dijaring	Skor
1.	Memahami masalah.	Jika benar menuliskan yang diketahui dan yang ditanya dari soal.	4
		Jika hanya menuliskan beberapa yang diketahui dan ditanya dengan benar	
		Jika menuliskan yang diketahui dan ditanya dari soal tetapi salah satunya tidak ditulis.	2
		Jika menuliskan yang ditanya dan diketahui namun salah	
		Jika tidak menuliskan yang ditanya dan diketahui dari soal	0
2.	Merencanakan Penyelesaian	Jika benar menuliskan strategi/model dan mengarah ke jawaban yang benar	4
		Jika hanya sebagian yang benar dalam menulisakan strategi/model	3
		Jika kurang tepat dalam menulisakan strategi/model	2
		Jika salah dalam menulisakan strategi/model	1
		Jika tidak menulisakan strategi/model	0
		Jika benar menuulis penyelesaian masalah dari soal	4
3.	Melaksanakan Penyelesaian	Jika menuliskan langkah penyelesaian dengan lengkap dan mengarah ke solusi yang benar namun terdapat langkah yang keliru	3
		Jika langkah penyelesaian tidak lengkap sehingga tidak memperoleh jawaban/terdapat langkah penyelesaian yang tidak jelas	2
		Jika ada penyelesaian tetapi prosedurnya ridak jelas	1

		Jika tidak menuliskan penyelesaian masalah dari soal	0
4.	Memeriksa kembali/ penulisan jawaban	Jika melakukan pengecekan dan kesimpulan yang diberikan menjawab apa yang ditanyakan pada soal	4
		Jika melakukan pengecekan namun kesimpulan yang diberikan kurang tepat	3
		Jika melakukan pengecekan namun tidak ada kesimpulan yang diberikan Jika tidak ada pengecekan namun ada kesimpulan yang tepat	2
		Kesimpulan yang diberikan salah	1
		Tidak ada pengecekan dan tidak ada kesimpulan	0

Sumber: Adaptasi dari Utari Sumarmo, Suatu Alternatif Untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika pada Guru dan Siswa SMP. Laporan Penelitian IKIP Bandung: tidak diterbitkan.

E. Teknik Analisis Data

Setelah data terkumpul, maka langkah selanjutnya ialah analisis data. Tahap yang paling penting dalam suatu penelitian adalah tahap pengolahan data, karena pada tahap ini hasil penelitian dirmuskan. Teknik analisis data yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Analisis Data Tes Kemampuan Pemecahan Masalah Matematika

Data yang didapat hasil tes kemampuan pemecahan masalah matematika siswa merupakan data ordinal, maka terlebih dahulu data terbuat dikonversikan dalam bentuk data interval dengan menggunakan Software Method Successive Interval (MSI) baik secara manual maupun dengan bantuan *Microsoft*

Excel. Adapun data yang diolah dalam penelitian ini adalah hasil data *pretest* dan *posttest* yang diperoleh dari kelas eksperimen dan kontrol. Selanjutnya data tersebut diuji dengan menggunakan uji-t pada taraf signifikan $\alpha = 0.05$.

Adapun langkah-langkah mengubah data ordinal menjadi data interval adalah sebagai berikut:

- a) Menghitung frekuensi setiap skor
- b) Menghitung proporsi

Proporsi dapat dihitung dengan membagi frekuensi setiap skala ordinal dengan jumlah seluruh frekuensi skala ordinal.

c) Menghitung proporsi komulatif

Proporsi komulatif dihitung dengan cara menjumlah setiap proporsi secara berurutan.

d) Menghitung nilai z

Dengan mengasumsikan proporsi komulatif berdistribusi normal baku maka nilai Z akan diperoleh dari tabel distrubusi Z atau tabel distribusi normal baku.

e) Menghitung nilai densitas fungsi z

Nilai densitas F(z) dihitung dengan menggunakan rumus sebagai berikut:

$$F(z) = \frac{1}{\sqrt{2\pi}} Exp\left(-\frac{1}{2}z^2\right)$$

f) Menghitung scale value

Rumus yang digunakan untuk menghitung *scale value*yaitu sebagai berikut:

$$SV = \frac{Density \ at \ lower \ limit - density \ at \ upper \ limit}{area \ under \ upper \ limit - area \ under \ lower \ limit}$$

Keterangan:

Density at lower limit =Nilai densitas batas bawah

Density at upper limit = Nilai densitas batas atas

Area under upper limit = Area batas atas

Area under lower limit = Area batas bawah

g) Menghitung penskalaan

Nilai hasil penskalaan dapat dihitung dengan cara sebagai berikut:

1) SV terkecil (SV min)

Ubah nilai *SV* terkecil (nilai negatif terbesar) diubah menjadi sama dengan 1.

2) Transformasi nilai skala dengan rumus

$$y = SV + |SV min|$$

Keterangan:

SV adalah scale value

Setelah data dikonverensikan menjadi skala interval, selanjutnya data tersebut diuji dengan menggunakan uji-t pada taraf signifikan $\alpha = 0.05$. Untuk mempermudah pengolahan data, maka data tersebut dibuat dalam bentuk daftar distribusi frekuensi.

Adapun langkah membuat daftar distribusi frekuensi dengan panjang kelas yang sama adalah sebagai berikut

a. Membuat tabel distribusi frekuensi

Membuat tabel dengan panjang kelas yang sama, maka menurut sudjana terlebih dahulu ditentukan:⁵⁸

- 1) Tentukan rentang (R), yaitu data terbesar dikurangi data terkecil
- 2) Tentukan banyak kelas interval (K) yang diperlukan banyak kelas interval dapat ditentukan dengan aturan Sturges, yaitu : banyak kelas = 1 + (3,3) log n
- 3) Tentukan panjang kelas interval P

$$P = \frac{Rentang}{Banyak \ kelas}$$

b. Menentukan nilai rata-rata (\bar{x}), dan simpangan baku(s)

Menurut Sudjana, nilai rata-rata (\bar{x}) dapat dihitung dengan rumus:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

Keterangan:

$$\bar{x}$$
 = rata – rata
 fi = frekuensi kelas interval

⁵⁸Sudjana, Metode Statistik, (Bandung: PT. Tarsito, 2005), hal. 47

 $xi = \text{titik tengah kelas interval}^{59}$

Untuk menentukan simpangan baku (s) dapat dicari dengan mencari terlebih dahulu varians (s^2), menurut sudjana varians dapat dicari dengan menggunakan rumus :

$$s^{2} = \frac{n \sum fixi^{2} - \sum (fixi)^{2}}{n(n-1)}$$

Keterangan:

 $s^2 = varians$

 $\bar{x} = \text{rata} - \text{rata}$

 f_i = banyak siswa dalam interval tertentu

 x_i = nilai tengah (tanda kelas interval)

n = banyak data seluruhnya.⁶⁰

c. Uji Normalitas

Sebagai persyaratan menggunakan uji-t, data harus berdistribusi normal. Normalitas adalah uji yang dilakukan untuk memperhatikan bahwa data sampel berasal dari populasi yang berdistribusi normal. Pengujian kenormalan data diperlukan untuk mengetahui apakah data yang telah diperoleh dari hasil tes siswa berdistribusi normal atau tidak. Adapun hipotesis yang akan diuji dalam penelitian ini yaitu:

 $H_0: O_i = E_i$ (data tes hasil belajar berdistribusi normal)

⁵⁹ Sudjana, *Metode Statistik*,..., h. 70

⁶⁰ Sudjana, Metode Statistik,..., h. 95

 $H_1: O_i > E_i$ (data tes hasil belajar tidak berdistribusi normal)

Selanjutnya untuk menguji normalitas data digunakan statistik chi-kuadrat seperti yang dikemukakan oleh Sudjana sebagai berikut:

$$X^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

Keterangan:

 X^2 : statistic chi kuadrat

O_i :frekuensi pengamatan

E_i :frekuensi yang diharapkan⁶¹

Dengan dk = (n-1) dan α = 0,05. Kriteria pengujian yang berlaku ialah H_0 jika $x^2_{\text{hitung}} < x^2_{(1-\alpha)(n-1)}$ dan terima H_0 jika x^2 mempunyai harga-hargalain.

d. Uji Homogenitas

Setelah melakukan uji normalitas, persyaratan berikutnya adalah melakukan uji homogenitas. Pada penelitian ini, pengujian homogenitasnya diuji dengan cara menguji nilai akhir (selisih *post-tes* dan *pret-tes*) kedua kelas sama. Pengujian homogenitas variansmenggunakan uji F dengan rumus:

$$F = \frac{varians\ terbesar}{varians\ terkecil}$$

⁶¹ Sudjana, *Metode Statistik*,..., h. 273

Jika pada perhitungan diperoleh F_{hitung} < F_{tabel} , maka data tersebut dikatakan mempunyai varians yang sama atau homogen. 62

e. Uji Kesamaan Dua Rata-Rata

Pengujian kesamaan rata-rata dilakukan untuk melihat peningkatan kemampuan pemecahan masalah siswa pada kelas eksperimen dan juga untuk melihat perbandingan kemampuan pemecahan masalah antara kelas eksperimen dan kelas kontrol.Pengujian dengan menggunakan statistik uji t. Pengujian ini dilakukan setelah data normal dan homogeny.

1) Kemampuan Pemecahan Masalah Kelas Eksperimen

Untuk menghitung peningkatan kemampuan pemecahan masalah matematis siswa kelas eksperimen di gunakan uji-t berpasangan (*paired sample t-test*) dengan rumus:

$$t = \frac{\bar{B}}{\frac{S_B}{\sqrt{n}}}$$
 dengan, $\bar{B} = \frac{\sum B}{n}$

$$S_B = \sqrt{\frac{1}{n-1} \left\{ \sum B^2 - \frac{\left(\sum B\right)^2}{n} \right\}}$$

62 Sudjana, Metode Statistik,..., h. 250

Keterangan:

 \bar{B} = Rata-rata selisih *pretes* dan *postest* kelas eksperimen

B = Selisih pretest dan postest kelas ekperimen

n = Jumlah sampel

 S_B = Standar deviasi dari B^{63}

Hipotesis pengujian 1

 H_0 : $\mu_1 \le \mu_2$ Model PembelajaranProblem Based Learning tidak dapat meningkatkan kemampuan pemecahan masalah matematika siswa.

 H_1 : $\mu_1 > \mu_2$ Model PembelajaranProblem Based Learningdapat meningkatkan kemampuan pemecahan masalah matematika siswa

Pengujian hipotesis yang dilakukan adalah uji-t pihak kanan dengan $\alpha=0.05$ dan dk = n-1. Adapun kriteria pengujian adalah tolak H_0 jika $t>t_{(1-\alpha)}$ dan terima H_0 dalam hal lainnya.

Untuk melihat bagaimana peningkatan kemampuan pemecahan masalah matematika siswa, jawaban siswa dihitung dan dianalisis menggunakan rubrik kemampuan pemecahan masalah matematika data kemampuan pemecahan masalah matematika siswa dianalisis berdasarkan indikator kemampuan pemecahan masalah matematika. Perolehan skor untuk kemampuan pemecahan masalah matematika siswa disesuaikan dengan rubrik

⁶³Sudjana, Metoda Statistika.., h. 242

kemampuan pemecahan masalah matematika. Untuk skor 0, 1, 2 dikategorikan Rendah dan untuk skor 3 dan 4 di kategorikan baik/baik sekali dengan merujuk pada tabel kriteria kemampuan siswa.

3.3. Kriteria Kemampuan Siswa

No.	Tingkat presentase	Interpretasi
1	$80\% < x \le 100\%$	Sangatbaik
2	60% < x ≤ 80%	Baik
3	40% < x ≤60%	Cukup
4	20% < x ≤40%	Kurang
5	0% < x ≤20%	Sangatkurang

Sumber: Suharsimi Arikunto (2006)

2) Perbandingan Kemampuan Pemecahan Masalah Matematika Antara Kelas Eksperimen dan Kelas Kontrol

Untuk melihat perbandingan kemampuan kemampuan pemecahan masalah matematika siswa yang diajarkan dengan pembelajaran *Problem Based Learning* dengan siswa yang diajarkan dengan konvensional digunakan uji-t sampel independen dengan rumus:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

dengan:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

Keterangan:

t = nilai t hitung

 \bar{x}_1 = nilai rata-rata tes akhir kelas ekperimen

 \bar{x}_2 = nilai rata-rata tes akhir kelas kontrol

s = simpangan baku

 s_1^2 = variansi kelas eksperimen

 s_2^2 = variansi kelas kontrol

 n_1 = jumlah anggota kelas eksperimen

 n_2 = jumlah anggota kelas kontrol⁶⁴

Hipotesis Pengujian 2:

 H_0 : $\mu_1 = \mu_2$ Kemampuan pemecahan masalah matematika siswa yang diajarkandengan model pembelajaran *problem based learning* sama dengan kemampuan pemecahan masalah matematika siswayang diajarkan dengan model pembelajaran konvensional pada materi statistika SMP Negeri 1 Darussalam.

 H_1 : $\mu_1 > \mu_2$ Kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran *problem based learning* lebih baik daripada kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensional SMP Negeri 1 Darussalam.

Pengujian hipotesis ini dilakukan pada taraf nyata $\alpha=0.05$. Kriteria pengujian di dapat dari daftar distribusi students-t dk = $(n_1 + n_2 - 2)$ dan peluang

⁶⁴ Sudjana, *Metoda Statistika*..., h. 95.

 $(1-\alpha)$. Di mana kriteria pengujiannya adalah tolak Ho jika $t_{hitung} > t_{tabel}$, dan terima H_1 Jika $t_{hitung} \le t_{tabel}$ terima H_0 tolak H_1 .

⁶⁵ Sudjana, *Metoda Statistika...*, h. 231.

BAB IV HASIL PENELITIAN

A. Hasil Penelitian

1. Deskripsi Lokasi Penelitian

Penelitian ini dilakukan pada SMP Negeri 1 Darussalam yang beralamat di Jln. Lambaro Angan No.42 kecamatan Darussalam Aceh Besar. SMP Negeri 1 Darussalam memiliki kondisi gedung yang sangat mendukung terlaksananya proses belajar mengajar. Sekolah ini mempunyai gedung permanen dan dilengkapi dengan beberapa prasarana, yaitu sebagai berikut:

a. Sarana dan Prasarana

Keadaan fisik SMP Negeri 1Darussalam sudah memadai, terutama ruang belajar, ruang kantor dan lain sebagainya. Untuk lebih jelasnya mengenai sarana dan prasarana dapat dilihat pada Tabel 4.1 berikut ini:

Tabel 4.1 Sarana dan Prasarana SMP Negeri 1 Darussalam

No	Uraian	Jumlah
1	Ruang Kelas	12
2	Ruang Kepala Sekolag	1
3	Ruang TU/Adm	1
4	Ruang Guru	1
6	Ruang Tamu	1
7	Ruang Laboratorium IPA	1
7	RuangPerpustakaan	1

Sumber: Laporan Bulanan Sekolah, Agustus tahun 2017

b. Keadaan Siswa

Untuk mengetahui keadaan dan jumlah siswa SMP Negeri 1Darussalam, dapat dilihat pada Tabel berikut ini:

Tabel 4.2 Distribusi Jumlah Siswa(i) SMP Negeri 1 Darussalam

Kelas	Banyaknya	Banyak Siswa				
Keias	kelas	Laki-Laki	Perempuan	Jumlah		
VII	4	62	34	96		
VIII	4	47	49	96		
IX	4	50	42	92		
Total	12	159	125	284		

Sumber: Laporan Bulanan Sekolah, September tahun 2017

c. Keadaan Guru dan Karyawan

Untuk mengetahui keadaan dan jumlah guru yang berada di SMP Negeri 1Darussalam, dapat dilihat pada Tabel berikut ini:

Tabel 4.3 Data Guru SMP Negeri 1 Darussalam

No	Uraian	LK	PR	Jumlah
1	Guru tetap	7	20	27
2	Guru tidak tetap	-	4	4
	Jumlah guru	7	24	31
3	Pelaksana tata Usaha Tetap	3	-	3
4	Pelaksana tata Usaha Tidak Tetap	1	1	2
5	Pesuruh Tetap	1	-	1
6	Pesuruh Petugas Kebersihan tidak Tetap	1	-	1
	Jumlah	13	25	38

Sumber: Inventaris Sekolah (Laporan Bulan September)tahun 2017

Adapun data guru matematika yang mengajar pada SMP Negeri 1Darussalam, dapat dilihat pada Tabel berikut ini:

Tabel 4.4 Data Guru Matematika SMP Negeri 1 Darussalam

No	Nama	L/P	GT/GHS
1	Nurhayati, SPd	P	GT
2	Yusra	P	GT
3	Elvida,SPd	P	GT
4	Ellyawati, SPd	P	GHS

Sumber: Inventaris Sekolah (Laporan Bulan September) tahun 2017

Keterangan:

GT : Guru Tetap

GHS : Guru Honor Sekolah

2. Deskripsi Sebelum Penelitian

Sebelum melakukan penelitian, peneliti melakukan observasi awal dan wawancara singkat dengan guru matematika kelas VIII SMP Negeri 1 Darusslam. Hasil observasi menunjukan bahwa kemampuan pemecahan masalah matematika siswa rendah dan model pembelajaran yang digunakan adalah model pembelajaran yang konvensional. Hal tersebut didukung dengan hasil tes yang dilakukan pada tanggal 16 Februari 2018, tes awal diberikan pada siswa SMP Negeri 1 Darussalam. Nilai tes awal dijadikan acuan untuk mengetahui kemampuan pemecahan masalah matematika siswa. Pada tanggal 20 Maret 2018, peneliti datang kembali ke SMP Negeri 1 Darussalam untuk menemui kepala sekolah memberikan surat izin penelitian dari dinas pendidikan setelah itu peneliti menemui guru matematika kelas VIII menanyakkan hal-hal yang diperlukan untuk meperoleh data penelitian. Penelitian ini dilakukan mulai tanggal 13 April 2018 s/d 20 April 2018.

3. Deskripsi Pelaksanaan Penelitian

Pelaksanaan penelitian dilaksanakan di SMP Negeri 1 Darussalam pada semester genap Tahun 2017/2018 mulai tanggal 13 April 2018 s/d 20 April 2018 pada siswa kelas VIII₄. Jadwal kegiatan penelitian dapat dilihat dalam Tabel 4.5 berikut:

Tabel 4.5 Jadwal Kegiatan Penelitian

No	Hari/Tanggal	Waktu (Menit)	Kegiatan	Kelas					
1	Jumat/13 April 2018	120	<i>Pretest</i> dan mengajar pertemuan I	Eksperimen					
3	Selasa/17 April 2018	80	Mengajar pertemuan II	Eksperimen					

5	Jumat/20 April 2018	120	Pertemuan Postest	III	dan	Eksperimen
---	---------------------	-----	----------------------	-----	-----	------------

Sumber: Jadwal Penelitian

4. Analisis Data Hasil Penelitian

1. Analisis Kemampuan Pemecahan Masalah Matematika

a. Analisis kemampuan pemecahan masalah kelas eksperimen

Tabel 4.6 Hasil *Pretest* dan *Postest* Kemampuan Pemecahan Masalah Siswa Kelas Eksperimen

No	Nama Siswa	Skor <i>Pretest</i>	Skor <i>Postest</i>
1.	AZ	2	36
2.	AS	14	21
3.	AR	12	50
4.	ADS	7	50
5.	EAS	12	26
6.	ML	18	54
7.	NA	12	10
8.	MFA	23	28
9.	MGA	8	46
10.	NAP	13	35
11.	SH	14	14
12.	MM	2	22
13.	PY	18	36
14.	SRI	7	50
15.	SR	13	35
16.	RD	6	30
17.	RM	11	19
18.	RF	8	35
19.	НА	9	25
20.	PS	2	38
21.	ZH	5	37
22.	ZR	17	36
23.	AMP	9	50
24.	MA	12	35

Sumber: Hasil Pengolahan Data

1) Konversi Data Ordinal ke Interval Kemampuan Pemecahan Masalah dengan MSI (Method of Successive Interval)

Data yang diolah adalah data skor *pretest* dan *postest*. Data skor *pretest* dan *postest* terlebih dahulu diubah dari data berskala ordinal ke data berskala interval dengan menggunakan MSI (*Method of Successive Interval*).

Tabel 4.7 Hasil Penskoran Tes Awal (*Pretest*) Kemampuan Pemecahan Masalah Kelas Eksperimen

Masaian Keias Eksperimen								
No.		Aspek yang dinilai	0	1	2	3	4	Jumlah
		1. Memahami masalah	12	2	4	4	2	24
		2. Merencanakan Penyelesaian	19	3	1	1	0	24
	a	3. Melaksanakan Penyelesaian	3	3	16	0	2	24
Soal 1		4. Memeriksa kembali/ penulisan jawaban	19	4	1	0	0	24
1		1. Memahami masalah	15	2	4	1	2	24
		2. Merencanakan Penyelesaian	18	2	3	1	0	24
	b	3. Melaksanakan Penyelesaian	10	4	5	3	2	24
		4. Memeriksa kembali/ penulisan jawaban	18	4	0	1	1	24
		1. Memahami masalah	17	2	5	0	0	24
		2. Merencanakan Penyelesaian	19	1	0	0	4	24
	a	3. Melaksanakan Penyelesaian	13	6	2	3	0	24
Soal		4. Memeriksa kembali/ penulisan jawaban	21	1	0	1	1	24
2		1. Memahami masalah	17	3	2	2	0	24
		2. Merencanakan Penyelesaian	23	0	0	1	0	24
	b	3. Melaksanakan Penyelesaian	15	1	7	1	0	24
		4. Memeriksa kembali/ penulisan jawaban	21	3	0	0	0	24
			260	41	50	19	14	384

Sumber: Hasil penskoran Kemampuan Pemecahan Masalah

Tabel 4.8 Hasil Penskoran Tes Akhir (*Postest*) Kemampuan Pemecahan Masalah Kelas Eksperimen

No.	Aspek yang dinilai		1	2	3	4	Jumlah
	1. Memahami masalah		1	1	1	21	24
Soal 1	2. Merencanakan Penyelesaian		1	1	0	5	24
Soar i	3. Melaksanakan Penyelesaian		3	6	0	12	24
	4. Memeriksa kembali/	16	5	2	0	1	24

penulisan jawaban								
		1. Memahami masalah	0	1	0	1	22	24
		2. Merencanakan Penyelesaian	0	1	0	7	16	24
Soal		3. Melaksanakan Penyelesaian	0	1	1	15	7	24
2	a	4. Memeriksa kembali/						
_		penulisan jawaban	18	0	0	0	6	24
		3. Melaksanakan Penyelesaian	5	2	2	2	13	24
	b	4. Memeriksa kembali/						
		penulisan jawaban	18	0	0	0	6	24
		1. Memahami masalah	1	1	1	1	20	24
Soal	3	2. Merencanakan Penyelesaian		1	2	0	15	24
		3. Melaksanakan Penyelesaian	3	1	0	16	4	24
		4. Memeriksa kembali/						
penulisan jawaban			5	0	11	7	1	24
			92	18	27	50	149	336

Sumber: Hasil penskoran Kemampuan Pemecahan Masalah

Data ordinal di atas akan diubah menjadi data yang berskala interval sehingga menghasilkan nilai interval. Berdasarkan hasil dari pengolahan kemampuan pemecahan masalah matematikakelas eksperimen dengan menggunakan MSI (*Method of Successive Interval*) prosedur manual dan *excel* (dalam lampiran) dapat dilihat pada tabel berikut ini:

Tabel 4.9 Data Total Skor Tes Awal dan Tes Akhir Kelas Eksperimen

No	Nama	Total Sko	r Tes Awal	Total Skor Tes Akhir		
INO	Ivallia	Ordinal	Interval	Ordinal	Interval	
1	AZ	2	18	36	31	
2	AS	14	28	21	24	
3	AR	12	26	50	40	
4	ADS	7	21	50	40	
5	EAS	12	27	26	27	
6	ML	18	31	54	42	
7	NA	12	26	10	21	
8	MFA	23	33	28	29	
9	MGA	8	22	46	38	
10	NAP	13	25	35	31	
11	SH	14	29	14	21	

12	MM	2	18	22	24
13	PY	18	31	36	32
14	SRI	7	22	50	40
15	SR	13	25	35	31
16	RD	6	20	30	29
17	RM	11	26	19	22
18	RF	8	22	35	31
19	HA	9	23	25	26
20	PS	2	18	38	32
21	ZH	5	20	37	32
22	ZR	17	28	36	32
23	AMP	9	23	50	40
24	MA	12	26	35	31

Sumber: Data Akumulasi Tes Awal dan Tes Akhir Eksperimen

2) Pengolahan Hasil *Pretest* dan *Postest* Kemampuan Pemecahan Masalah Matematis Kelas Eksperimen Secara Manual

a) Pengolahan tes awal (pretest) kelas eksperimen

Adapun langkah-langkahnya sebagai berikut:

(1) Mentabulasi data ke dalam tabel distribusi frekuensi, menentukan nilai rata-rata (\bar{x}) dan simpangan baku (s)*pretest* kelas eksperimen.

Berdasarkan data skor total dari data kondisi awal (*pretest*) kemampuan pemecahan masalahkelas eksperimen, maka berdasarkan skor total, distribusi frekuensi untuk data pretest kemampuan pemecahan masalahmatematika sebagai berikut:

Rentang (R) = nilai tertinggi- nilai terendah =
$$33 - 18 = 15$$

Diketahui n = 24

Banyak kelas interval (K) = $1 + 3.3 \log n$

$$= 1 + 3.3 \log 24$$

$$= 1 + 3,3 (1,3802)$$

$$= 1 + 4,5547$$

 $= 5.5547$

Banyak kelas interval = 5,5547 (diambil 6)

Panjang kelas interval (P) $=\frac{R}{K} = \frac{15}{6} = 2,5$ (diambil 3)

Tabel 4.10Daftar Distribusi Frekuensi Nilai Tes Awal (*Pretest*) Kelas Eksperimen

Nilai	Frekuensi (f_i)	Nilai Tengah (x_i)	x_i^2	$f_i x_i$	$f_i x_i^2$
18-20	5	19	361	95	1805
21-23	6	22	484	132	2904
24-26	6	25	625	150	3750
27-29	4	28	784	112	3136
30-32	2	31	961	62	1922
33-35	1	34	1156	34	1156
Total	24	159	4371	585	14673

Sumber: Hasil Pengolahan Data

Dari tabel, diperoleh nilai rata-rata dan varians sebagai berikut:

$$\overline{x_1} = \frac{\sum f_i x_i}{\sum f_i} = \frac{585}{24} = 24,38$$

Varians dan simpangan bakunya adalah:

$$s_1^2 = \frac{n \sum f_i \, x_i^2 - (\sum f_i \, x_i)^2}{n(n-1)}$$

$$s_1^2 = \frac{24(14673) - (585)^2}{24(24 - 1)}$$

$$s_1^2 = \frac{352152 - 342225}{24(23)}$$

$$s_1^2 = \frac{9927}{552}$$

$$s_1^2 = 17,98$$

$$s_1 = 4,24$$

Variansnya adalah $s_1^2=17,98$ dan simpangan bakunya adalah $s_1=4,24$

(2) Uji Normal Pretest Kelas Eksperimen

Uji normalitas data bertujuan untuk mengetahui apakah data dari kelas dalam penelitian berasal dari populasi yang berdistribusi normal atau tidak. Uji normalitas tersebut dilakukan dengan uji distribusi chi-kuadrat

Adapun hipotesis dalam uji kenormalan data *pretest* kelas eksperimen adalah sebagai berikut:

 H_0 : sampel berasal dari populasi yang berdistribusi normal

 H_1 : sampel berasal dari populasi yang tidak berdistribusi normal

Berdasarkan perhitungan sebelumnya, untuk pretest kelas eksperimen diperoleh $\overline{x_1}=24{,}38$ dan $s_1=4{,}24$

Tabel 4.11 Uji Normalitas Sebaran Pretest Kelas Eksperimen

Nilai Tes	Batas Kelas	Z Score	Batas Luas Daerah	Luas Daerah	Frekuensi Diharapkan (E_i)	Frekuensi Pengamatan (O_i)
	17,5	-1,62	0,4474			
18-20				0,1315	3,156	5
	20,5	-0,91	0,3159			
21-23				0,2445	5,868	6
	23,5	-0,21	0,0714			
24-26				0,2768	6,6432	6
	26,5	0,50	0,2054			
27-29				0,1908	4,5792	4
	29,5	1,21	0,3962			
30-32				0,0799	1,9176	2
	32,5	1,92	0,4761			

Sumber: Hasil Pengolahan Data

Keterangan:

Batas kelas =
$$Batas \ bawah - 0.5 = 18 - 0.5 = 17.5$$

Zscore
$$=\frac{x_i - \overline{x_1}}{s_1}$$

$$= \frac{17,5-24,38}{4,24.}$$
$$= -1,62$$

Batas luas daerah dapat dilihat pada tabel Zscore dalam lampiran

Luas daerah =
$$0.4474 - 0.3159 = 0.1315$$

$$E_i = Luas daerah tiap kelas Interval \times Banyak Data$$

$$E_i = 0.1315 \times 24$$

$$E_i = 3.156$$

Adapun nilai chi-kuadrat hitung adalah sebagai berikut:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{(5 - 3,156)^{2}}{3,156} + \frac{(6 - 5,868)^{2}}{5,868} + \frac{(6 - 6,6432)^{2}}{6,6432} + \frac{(4 - 4,5792)^{2}}{4,5792} + \frac{(2 - 1,9176)^{2}}{1,9176} + \frac{(1 - 0,4896)^{2}}{0,489}$$

$$\chi^{2} = \frac{3,400}{3,156} + \frac{0,017}{5,868} + \frac{0,418}{6,6432} + \frac{0,335}{4,5792} + \frac{0,006}{1,9176} + \frac{0,260}{0,489}$$

$$\chi^{2} = 1,08 + 0,00 + 0,06 + 0,07 + 0,00 + 0,53$$

$$\chi^{2} = 1,74$$

Berdasarkan taraf signifikan 5% ($\alpha = 0.05$) dengan dk = k - 1 = 6 - 1 = 5 maka $\chi^2(1-\alpha)(k-1) = 11.1$. Kriteria pengambilan keputusannya yaitu: "tolak H_0 jika $\chi^2 \ge \chi^2(1-\alpha)(k-1)$. dengan $\alpha = 0.05$, terima H_0 jika $\chi^2 \le \chi^2(1-\alpha)(k-1)$ ". Oleh karena $\chi^2 \le \chi^2(1-\alpha)(k-1)$ yaitu $1.74 \le 11.1$ maka terima H_0 dan dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal.

b) Pengolahan tes akhir (postest) kelas eksperimen

Adapun langkah-langkahnya sebagai berikut:

(1) Mentabulasi data ke dalam tabel distribusi frekuensi, menentukan nilai rata-rata (\bar{x}) dan simpangan baku (s)*postest* kelas eksperimen

Berdasarkan data skor total dari data kondisi akhir (*postest*) kemampuan pemecahan masalah matematika kelas eksperimen, maka berdasarkan skor total, distribusi frekuensi untuk data postest Kemampuan Pemecahan Masalah matematika sebagai berikut:

Rentang (R) = nilai tertinggi- nilai terendah = 42 - 21 = 21

Diketahui n = 24

Banyak kelas interval (K) = $1 + 3.3 \log n$

$$= 1 + 3.3 \log 24$$

$$= 1 + 3.3 (1.3802)$$

$$= 1 + 4,5547$$

$$= 5.5547$$

Banyak kelas interval = 5,5547 (diambil 5)

Panjang kelas interval (P) = $\frac{R}{K} = \frac{21}{5} = 4.2$ (diambil 5)

Tabel 4.12Daftar Distribusi Frekuensi Nilai Tes Akhir (*Postest*) Kelas Eksperimen

Nilai	Frekuensi (f_i)	Nilai Tengah (x_i)	x_i^2	$f_i x_i$	$f_i x_i^2$
21-25	5	23	529	115	2645
26-30	4	28	784	112	3136
31-35	9	33	1089	297	9801
36-40	5	38	1444	190	7220
41-45	1	43	1849	43	1849
Total	24	165	5695	757	24651

Dari tabel, diperoleh nilai rata-rata dan varians sebagai berikut:

$$\overline{x_1} = \frac{\sum f_i x_i}{\sum f_i} = \frac{757}{24} = 31,54$$

Varians dan simpangan bakunya adalah:

$$s_1^2 = \frac{n \sum f_i x_i^2 - (\sum f_i x_i)^2}{n(n-1)}$$

$$s_1^2 = \frac{24(24651) - (757)^2}{24(24 - 1)}$$

$$s_1^2 = \frac{591624 - 573049}{24(23)}$$

$$s_1^2 = \frac{18575}{552}$$

$$s_1^2 = 33,65$$

$$s_1 = 5.80$$

Variansnya adalah $s_1^2=33,65$ dan simpangan bakunya adalah $s_1=5,80$

(2) Uji Normal Postest Kelas Eksperimen

Uji normalitas data bertujuan untuk mengetahui apakah data dari kelas dalam penelitian berasal dari populasi yang berdistribusi normal atau tidak. Uji normalitas tersebut dilakukan dengan uji distribusi chi-kuadrat

Adapun hipotesis dalam uji kenormalan data *postest* kelas eksperimen adalah sebagai berikut:

 H_0 : sampel berasal dari populasi yang berdistribusi normal

 H_1 : sampel berasal dari populasi yang tidak berdistribusi normal

Berdasarkan perhitungan sebelumnya, untuk *postest* kelas eksperimen diperoleh $\overline{x_1}=31,54$ dan $s_1=5,80$

Tabel 4.13 Uji Normalitas Sebaran Postest Kelas Eksperimen

					Frekuensi	Frekuensi
Nilai	Batas	Z	Batas Luas	Luas	Diharapkan	Pengamatan
Tes	Kelas	Score	Daerah	Daerah	(E_i)	(O_i)
	20,5	-1,90	0,4713			
21-25				0,1205	2,8920	5
	25,5	-1,04	0,3508			
26-30				0,2794	6,7056	4
	30,5	-0,18	0,0714			
31-35				0,3232	7,7568	9
	35,5	0,68	0,2518			
36-40				0,1864	4,4736	5
	40,5	1,54	0,4382			
41-45				0,0538	1,2912	1
	45,5	2,41	0,4920			

Sumber: Hasil Pengolahan Data

Keterangan:

Batas kelas =
$$Batas \ bawah - 0.5 = 21 - 0.5 = 20.5$$

Zscore
$$= \frac{x_i - \overline{x_1}}{s_1}$$
$$= \frac{20,5 - 31,54}{5,80}$$
$$= -1,90$$

Batas luas daerah dapat dilihat pada tabel Zscore dalam lampiran

Luas daerah =
$$0,4713 - 0,3508 = 0,1205$$

 $E_i = Luas \ daerah \ tiap \ kelas \ Interval \times Banyak \ Data$

$$E_i = 0.1205 \times 24$$

$$E_i = 2,8920$$

Adapun nilai chi-kuadrat hitung adalah sebagai berikut:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{(5 - 2,8920)^{2}}{2,8920} + \frac{(4 - 6,7056)^{2}}{6,7056} + \frac{(9 - 7,7568)^{2}}{7,7568} + \frac{(5 - 4,4736)^{2}}{4,4736} + \frac{(1 - 1,2912)^{2}}{1,2912}$$

$$\chi^{2} = \frac{4,4437}{2,8920} + \frac{7,3203}{6,7056} + \frac{1,5455}{7,7568} + \frac{0,2771}{4,4736} + \frac{0,0848}{1,2912} +$$

$$\chi^{2} = 1,5365 + 1,0917 + 0,1992 + 0,0619 + 0,0657$$

$$\chi^{2} = 2,96$$

Berdasarkan taraf signifikan 5% ($\alpha = 0.05$) dengan dk = k - 1 = 5 - 1 = 4 maka $\chi^2(1-\alpha)(k-1) = 9.49$. Kriteria pengambilan keputusannya yaitu: "tolak H_0 jika $\chi^2 \ge \chi^2(1-\alpha)(k-1)$. dengan $\alpha = 0.05$, terima H_0 jika $\chi^2 \le \chi^2(1-\alpha)(k-1)$ ". Oleh karena $\chi^2 \le \chi^2(1-\alpha)(k-1)$ yaitu $2.96 \le 9.49$ maka terima H_0 dan dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal.

(3) Pengujian Hipotesis

Adapun rumus hipotesis taraf signifikan (α) = 0,05. Hipotesis yang akan diuji adalah :

Hipotesis 1

 H_0 : $\mu_1 \leq \mu_2$ Model *Problem Based Learning* (PBL) tidak dapat meningkatkan kemampuan pemecahan masalah matematika pada siswa SMP

 H_1 : $\mu_1 > \mu_2$ Model *Problem Based Learning* (PBL) dapat meningkatkan kemampuan pemecahan masalah matematika pada siswa SMP

Langkah-langkah yang akan selanjutnya adalah menentukan beda ratarata dan simpangan baku dari data tersebut, namun sebelumnya akan disajikan terlebih dahulu Table untuk mencari beda nilai *pretest* dan *postest* sebagai berikut :

Tabel 4.14 Beda Nilai Tes Awal (*Pretest*) dan Tes Akhir (*Postest*) Kelas Eksperimen

(Fostest) Keias Eksperimen					
No	Kode	X (Pretes)	Y (Postest)	В	B^2
1	AZ	18	31	13	169
2	AS	28	24	-4	16
3	AR	26	40	14	196
4	ADS	21	40	19	361
5	EAS	27	27	0	0
6	ML	31	42	11	121
7	NA	26	21	-5	25
8	MFA	33	29	-4	16
9	MGA	22	38	16	256
10	NAP	25	31	6	36
11	SH	29	21	-8	64
12	MM	18	24	6	36
13	PY	31	32	1	1
14	SRI	22	40	18	324
15	SR	25	31	6	36
16	RD	20	29	9	9
17	RM	26	22	-4	4
18	RF	22	31	9	9
19	HA	23	26	3	3
20	PS	18	32	14	14
21	ZH	20	32	12	12
22	ZR	28	32	4	4
23	AMP	23	40	17	289
24	MA	26	31	5	25
To	otal	588	746	208	2026

Sumber: Hasil Pretes dan Postes Kelas Eksperimen

Dari data di atas maka dapat di lakukan uji-t yaitu dengan cara sebagai berikut :

a) Menentukan rata-rata

$$\bar{B} = \frac{\sum B}{n} = \frac{208}{24} = 8,66$$

b) Menentukan simpangan baku

$$S_{B} = \sqrt{\frac{1}{n-1} \left\{ \sum B^{2} - \frac{(\sum B)^{2}}{n} \right\}}$$

$$S_{B} = \sqrt{\frac{1}{24-1} \left\{ 2,026 - \frac{(208)^{2}}{24} \right\}}$$

$$S_{B} = \sqrt{\frac{1}{23} \left\{ 2,026 - \frac{43,264}{24} \right\}}$$

$$S_{B} = \sqrt{\frac{1}{23} \left\{ 2,026 - 1,802.66 \right\}}$$

$$S_{B} = \sqrt{\frac{1}{23} \left\{ 223,34 \right\}}$$

$$S_{B} = \sqrt{\frac{223,34}{23}}$$

$$S_{B} = \sqrt{9,71}$$

$$S_{B} = 3,11$$

Berdasarkan perhitungan di atas diperoleh $\bar{B}=8,66$ dan S = 3,11 maka dapat dihitung nilai t sebagai berikut :

$$t = \frac{\overline{B}}{\frac{S_B}{\sqrt{n}}}$$

$$t = \frac{8,66}{\frac{3,11}{\sqrt{24}}}$$

$$t = \frac{8,66}{\frac{3,11}{4,90}}$$

$$t = \frac{8,66}{0,63}$$

$$t = 13.74$$

Harga t_{tabel} dengan taraf signifikan $\alpha = 0.05$ dan dk = n - 1 = 23 dari daftar distribusi-t diperoleh t_{tabel} sebesar 1,71 dan t_{hitung} sebesar 13,74 yang berarti t_{hitung} > t_{tabel} maka tolak H_0 sehingga terima H_1 , yaitu Model *Problem Based Learning* (PBL) dapat meningkatkan kemampuan pemecahan masalah matematika pada siswa SMP.

a. Deskripsi Analisis Data Tes Awal (*Pretes*) dan Tes Akhir (*Postest*)
 Berdasarkan Indikator Kemampuan Pemecahan Maslah

Sebelum melakukan penelitian peneliti memberikan *pretes* kepada 24 orang siswa di kelas eksperimen. *Pretes* yang diberikan berupa tes kemampuan pemecahan masalah matematis siswa dalam bentuk essay yang terdiri dari 2 soal. Tujuan diberikan *pretest* adalah untuk mengetahui kemampuan awal siswa tentang kemampuan pemecahan masalah matematis siswa. Kemudian setelah peneliti melaksanakan proses belajar mengajar dengan menggunakan Model *Problem Based Learning* (PBL), peneliti memberikan *postest* kepada 24 orang siswa. Soal yang diberikan dalam bentuk essay yang terdiri dari 3 soal yang dibuat berdasarkan indikator kemampuan pemecahan masalah. Tujuan diberikan *postest* untuk melihat tingkat kemampuan pemecahan masalah matematis siswa setelah diterapkan Model *Problem Based Learning* (PBL). Adapun skor *pretes* dan

postest kemampuan pemecahan masalah matematis siswa kelas eksperimen dapat dilihat pada Tabel berikut :

Tabel 4.15 Skor Hasil Tes Awal (*Pretest*) Kemampuan Pemecahan Masalah Matematis Siswa

No.		Aspek yang dinilai	0	1	2	3	4	Jumlah
		1. Memahami masalah	12	2	4	4	2	24
		2. Merencanakan Penyelesaian	19	3	1	1	0	24
	a	3. Melaksanakan Penyelesaian	3	3	16	0	2	24
Soal 1		 Memeriksa kembali/ penulisan jawaban 	19	4	1	0	0	24
1		 Memahami masalah 	15	2	4	1	2	24
		2. Merencanakan Penyelesaian	18	2	3	1	0	24
	b	3. Melaksanakan Penyelesaian	10	4	5	3	2	24
		 Memeriksa kembali/ penulisan jawaban 	18	4	0	1	1	24
		1. Memahami masalah	17	2	5	0	0	24
		2. Merencanakan Penyelesaian	19	1	0	0	4	24
	a	3. Melaksanakan Penyelesaian	13	6	2	3	0	24
Soal		 Memeriksa kembali/ penulisan jawaban 	21	1	0	1	1	24
2		 Memahami masalah 	17	3	2	2	0	24
		2. Merencanakan Penyelesaian	23	0	0	1	0	24
	b	3. Melaksanakan Penyelesaian	15	1	7	1	0	24
		 Memeriksa kembali/ penulisan jawaban 	21	3	0	0	0	24
		Frekuensi	260	41	50	19	14	384

Sumber: Hasil Pengolahan Data

Adapun skor *postes*t kemampuan pemecahan masalah matematis siswa kelas eksperimen dapat dilihat pada Tabel berikut :

Tabel 4.16 Skor Hasil Tes Akhir (*Postest*) Kemampuan Pemecahan Masalah Matematis Siswa

No.	Aspek yang dinilai	0	1	2	3	4	Jumlah
	1. Memahami masalah		1	1	1	21	24
Soal 1	2. Merencanakan Penyelesaian	17	1	1	0	5	24
Soar i	3. Melaksanakan Penyelesaian	3	3	6	0	12	24
	4. Memeriksa kembali/	16	5	2	0	1	24

		penulisan jawaban						
		1. Memahami masalah		1	0	1	22	24
		2. Merencanakan Penyelesaian		1	0	7	16	24
Soal		3. Melaksanakan Penyelesaian	0	1	1	15	7	24
2	a	4. Memeriksa kembali/						
		penulisan jawaban	18	0	0	0	6	24
		3. Melaksanakan Penyelesaian	5	2	2	2	13	24
	b	4. Memeriksa kembali/						
		penulisan jawaban	18	0	0	0	6	24
		1. Memahami masalah	1	1	1	1	20	24
Soal	3	2. Merencanakan Penyelesaian	6	1	2	0	15	24
		3. Melaksanakan Penyelesaian	3	1	0	16	4	24
		4. Memeriksa kembali/						
	penulisan jawaban			0	11	7	1	24
		Frekuensi	92	18	27	50	149	336

Dari Tabel 4.15 dan 4.16 di atas kemudian disajikan persentase kemampuan pemecahan masalah matematis siswa sebagai berikut :

Tabel 4.17 Persentase Hasil Tes Awal (*Pretest*) dan Tes Akhir (*Postest*) Kemampuan Pemecahan Masalah

	Kemampuan Pemecanan Wasaian				
	Tes Awal				
No	Aspek yang diamati	Kurang	Baik/Baik sekali		
1	Memahami Masalah	89%	12%		
2	Merencanakan Penyelesaian	93%	7%		
3	Melaksanakan Penyelesaian	88%	12%		
4	Memeriksa kembali/penulisan jawaban	96%	4%		
	Tes Akhir				
No	Aspek yang diamati	Kurang	Baik/Baik sekali		
1	Memahami Masalah	8%	92%		
2	Merencanakan Penyelesaian	40%	60%		
3	Melaksanakan Penyelesaian	28%	72%		
4	Memeriksa kembali/penulisan jawaban	78%	22%		

Sumber: Hasil Pengolahan Data

Dari Tabel 4.17 terlihat bahwa keadaan awal kemampuan pemecahan masalah matematis siswa untuk tiap-tiap indikator memiliki persentase sebagai berikut:

(1) Memahami Masalah

Persentase kemampuan Memahami masalah yang ditunjukkan dengan menulis diketahui maupun yang ditanyakan soal dengan tepat dalam ketegori kurang mengalami penurunan dari yang sebelumnya 89% menjadi 8%, sedangkan dalam kategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 12% menjadi 92%.

(2) Merencanakan Penyelesaian

Persentase Merencanakan Penyelesaianhubungan-hubungan antara pernyataan-pernyataan, pertanyaan-pertanyaan, dan konsep-konsep yang diberikan dalam soal yang ditunjukkan dengan membuat model matematika dengan tepat dan memberi penjelasan dengan tepat dalam ketegori kurang mengalami penurunan dari yang sebelumnya 88% menjadi 28%, sedangkan dalam kategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 12% menjadi 72%.

(3) Melaksanakan Penyelesaian

Persentase kemampuan Menggunakan strategi yang tepat dalam menyelesaikan soal, lengkap dan benar dalam melakukan perhitungandalam ketegori kurang mengalami penurunan dari yang sebelumnya 77% menjadi 39%, sedangkan dalam kategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 23% menjadi 61%.

(4) Memeriksa kembali/penulisan jawaban

Persentase kemampuan memerikasa kembali/penulisan jawaban dengan tepatdalam ketegori kurang mengalami penurunan dari yang sebelumnya 96% menjadi 78%, sedangkan dalam kategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 4% menjadi 22%.

Berdasarkan hasil tabel 4.17 dan uraian di atas menunjukkann bahwa kemampuan berpikir kritis matematis siswa kelas eksperimen terhadap seluruh indikator kemampuan berpikir kritismatematis dalam kategori kurang mengalami penurunan dari yang sebelumnya 92% menjadi 39%, sedangkan siswa yang berkategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 9% menjadi 62%.Maka hal tersebut dapat dikatakan bahwa penerapan model pembelajaran*Problem Based Learning* dapat meningkatkan kemampuan pemecahan masalah matematika siswa.

3) Analisis Kemampuan Pemecahan Masalah Kelas Kontrol

Tabel 4.18Hasil *Pretest* dan *Postest* Kemampuan Pemecahan Masalah Siswa Kelas Kontrol

No	Kode Siswa	Skor <i>Pretest</i>	Skor <i>Postest</i>
1	APS	7	31
2	AF	20	8
3	DU	15	26
4	AH	13	38
5	FE	9	16
6	HU	3	9
7	SH	4	18
8	LIM	7	26
9	LI	11	22
10	NS	8	26
11	IRM	7	9
12	MA	10	45
13	RJ	9	26
14	MU	7	41
15	SA	15	26

16	SB	4	13
17	IY	9	26
18	UA	5	22
19	ASZ	12	8
20	SAF	18	5
21	ZZF	15	6
22	ZAP	4	26
23	MAZ	12	24
24	MK	0	24

1) Konversi Data Ordinal ke Interval Kemampuan Pemecahan Masalah Matematis dengan MSI (*Method of Successive Interval*)

Data yang diolah adalah data skor *pretest dan postest*. Data skor *pretest* dan *postest* terlebih dahulu data diubah dari data berskala ordinal ke data berskala interval dengan menggunakan MSI (*Method of Successive Interval*).

Tabel 4.19 Hasil Penskoran Tes Awal (pretest) KemampuanPemecahan Masalah Siswa Kelas Kontrol

No.		Aspek yang dinilai	0	1	2	3	4	Jumlah
		 Memahami masalah 	11	5	4	3	1	24
		2. Merencanakan Penyelesaian	22	1	0	1	0	24
	A	3. Melaksanakan Penyelesaian	4	7	4	4	5	24
Soal 1		4. Memeriksa kembali/ penulisan jawaban		1	0	0	0	24
1		 Memahami masalah 	12	4	1	4	3	24
		2. Merencanakan Penyelesaian	14	1	5	3	1	24
	В	3. Melaksanakan Penyelesaian	14	3	2	5	0	24
		 Memeriksa kembali/ penulisan jawaban 	20	4	0	0	0	24
		 Memahami masalah 	15	6	3	0	0	24
		2. Merencanakan Penyelesaian	19	0	2	3	0	24
	A	3. Melaksanakan Penyelesaian	16	4	4	0	0	24
Soal		 Memeriksa kembali/ penulisan jawaban 	24	0	0	0	0	24
2		 Memahami masalah 	18	3	3	0	0	24
		2. Merencanakan Penyelesaian	22	1	1	0	0	24
	В	3. Melaksanakan Penyelesaian	16	1	5	2	0	24
		4. Memeriksa kembali/ penulisan jawaban	24	0	0	0	0	24

Frekuensı 274 41 34 25 10 384

Tabel 4.20Hasil Penskoran Tes Akhir (postest) Kemampuan Pemecahan Masalah Siswa Kelas Kontrol

No.		Aspek yang dinilai	0	1	2	3	4	Jumlah
		1. Memahami masalah	1	5	2	2	14	24
		2. Merencanakan Penyelesaian	16	1	2	2	3	24
Soal	1	3. Melaksanakan Penyelesaian	1	5	14	0	4	24
		4. Memeriksa kembali/ penulisan jawaban	20	2	1	1	0	24
		1. Memahami masalah	3	7	1	0	13	24
		2. Merencanakan Penyelesaian	7	4	1	1	11	24
Soal		3. Melaksanakan Penyelesaian	6	5	1	10	2	24
2	a	4. Memeriksa kembali/						
		penulisan jawaban	19	2	0	3	0	24
		3. Melaksanakan Penyelesaian	15	5	0	1	3	24
	b	4. Memeriksa kembali/ penulisan jawaban	20	1	3	0	0	24
		1. Memahami masalah	3	4	1	3	13	24
Soal	3	2. Merencanakan Penyelesaian	17	4	1	2	0	24
		3. Melaksanakan Penyelesaian	3	4	2	9	6	24
		4. Memeriksa kembali/ penulisan jawaban	5	4	13	2	0	24
C 1		Frekuensi	136	53	42	36	69	336

Sumber: Hasil Pengolahan Data

Data ordinal di atas akan diubah menjadi data yang berskala interval sehingga menghasilkan nilai interval. Berdasarkan hasil dari pengolahan kemampuan pemecahan masalah matematikakelas kontrol dengan menggunakan MSI (*Method of Successive Interval*) prosedur manual dan *excel* (dalam lampiran) dapat dilihat pada tabel berikut ini:

Tabel 4.21 Data Total Skor Tes Awal dan Tes Akhir Kelas Kontrol

NO	NAMA	Jumlah	Tes Awal	Jumlah Tes Akhir		
		Ordinal	Interval	Ordinal	Interval	
1	APS	7	21	31	32	
2	AF	20	33	8	19	

3	DU	15	30	26	29
4	AH	13	25	38	36
5	FE	9	24	16	26
6	HU	3	18	9	22
7	SH	4	20	18	28
8	LIM	7	23	26	29
9	LI	11	27	22	27
10	NS	8	22	26	29
11	IRM	7	22	9	22
12	MA	10	24	45	40
13	RJ	9	22	26	29
14	MU	7	22	41	39
15	SA	15	28	26	29
16	SB	4	19	13	24
17	IY	9	22	26	29
18	UA	5	20	22	27
19	ASZ	12	25	8	20
20	SAF	18	30	5	18
21	ZZF	15	28	6	18
22	ZAP	4	19	26	29
23	MAZ	12	26	24	29
24	MK	0	16	24	29

2) Pengolahan *Pretest dan Postest* Kemampuan Pemecahan Masalah Matematis Siswa Kelas Kontrol

a. Pengolahan Tes Awal (Pretest) Kelas Kontrol

Adapun langkah-langkahnya sebagai berikut:

(1) Mentabulasi data ke dalam tabel distribusi frekuensi, menentukan nilai rata-rata (\bar{x}) dan simpangan baku (s)*pretest* kelas kontrol

Berdasarkan data skor total dari data kondisi awal (*pretest*) kemampuan pemecahan masalah kelas kontrol, maka berdasarkan skor total,

distribusi frekuensi untuk data *pretest* kemampuan pemecahan masalah matematika sebagai berikut:

Rentang (R) = nilai tertinggi- nilai terendah = 33 - 16 = 17

Diketahui n = 24

Banyak kelas interval (K) = $1 + 3.3 \log n$

$$= 1 + 3.3 \log 24$$

$$= 1 + 3.3 (1.3802)$$

$$= 1 + 4,5547$$

$$= 5,5547$$

Banyak kelas interval = 5,5547 (diambil 6)

Panjang kelas interval (P) = $\frac{R}{K} = \frac{17}{6} = 2,83$ (diambil 3)

Tabel 4.22Daftar Distribusi Frekuensi Nilai Tes Awal (*Pretest*) Kelas Kontrol

Nilai	Frekuensi (f_i)	Nilai Tengah (x_i)	x_i^2	$f_i x_i$	$f_i x_i^2$
16-18	2	17	289	34	578
19-21	5	20	400	100	2000
22-24	8	23	529	184	4232
25-27	4	26	676	104	2704
28-30	4	29	841	116	3364
31-33	1	32	1024	32	1024
Total	24	147	3759	570	13902

Sumber: Hasil Pengolahan Data

Dari tabel, diperoleh nilai rata-rata dan varians sebagai berikut:

$$\overline{x_1} = \frac{\sum f_i x_i}{\sum f_i} = \frac{570}{24} = 23,75$$

Varians dan simpangan bakunya adalah:

$$s_1^2 = \frac{n \sum f_i x_i^2 - (\sum f_i x_i)^2}{n(n-1)}$$

$$s_1^2 = \frac{24(13902) - (570)^2}{24(24 - 1)}$$

$$s_1^2 = \frac{333648 - 324900}{24(23)}$$

$$s_1^2 = \frac{8748}{552}$$

$$s_1^2 = 15,85$$

$$s_1 = 3,98$$

Variansnya adalah $s_1^2=15,85$ dan simpangan bakunya adalah $s_1=3,98$

(2) Uji Normal Pretest Kelas Kontrol

Uji normalitas data bertujuan untuk mengetahui apakah data dari kelas dalam penelitian berasal dari populasi yang berdistribusi normal atau tidak. Uji normalitas tersebut dilakukan dengan uji distribusi chi-kuadrat

Adapun hipotesis dalam uji kenormalan data *pretest* kelas kontrol adalah sebagai berikut:

 H_0 : sampel berasal dari populasi yang berdistribusi normal

 H_1 : sampel berasal dari populasi yang tidak berdistribusi normal

Berdasarkan perhitungan sebelumnya, untuk pretest kelas kontrol diperoleh $\overline{x_1}=23,75$ dan $s_1=3,98$.

Tabel 4.23 Uji Normalitas Sebaran Pretest Kelas Kontrol

Nilai Tes	Batas Kelas	Z Score	Batas Luas Daerah	Luas Daerah	Frekuensi Diharapkan (E_i)	Frekuensi Pengamatan (O_i)
	15,5	-2,07	0,4808			
16-18				0,0746	1,7904	2
	18,5	-1,32	0,4066			
19-21				0,1909	4,5816	5
	21,5	-0,57	0,2157			
22-24				0,2911	6,9864	8

	24,5	0,19	0,0754			
25-27				0,251	6,024	4
	27,5	0,94	0,3264			
28-30				0,129	3,096	4
	30,5	1,70	0,4554			
31-33				0,0375	0,9	1
	33,5	2,45	0,4929			

Keterangan:

Batas kelas =
$$Batas \ bawah - 0.5 = 16 - 0.5 = 15.5$$

Zscore
$$= \frac{x_i - \overline{x_1}}{s_1}$$

$$= \frac{15,5 - 23,75}{3,98}$$

$$= -2,07$$

Batas luas daerah dapat dilihat pada tabel Zscore dalam lampiran

Luas daerah = 0,4808
$$-$$
 0,4066 = 0,0746
$$E_i = Luas\ daerah\ tiap\ kelas\ Interval \times Banyak\ Data$$

$$E_i = 0,0746 \times 24$$

$$E_i = 1,7904$$

Adapun nilai chi-kuadrat hitung adalah sebagai berikut:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{(2 - 1,7908)^{2}}{1,7908} + \frac{(5 - 4,5816)^{2}}{4,5816} + \frac{(8 - 6,9864)^{2}}{6,9864} + \frac{(4 - 6,024)^{2}}{6,024} + \frac{(4 - 3,096)^{2}}{3,096} + \frac{(1 - 0,9)^{2}}{0,9}$$

$$\chi^{2} = \frac{0,04}{1,7908} + \frac{0,18}{4,5816} + \frac{1,03}{6,9864} + \frac{4,10}{6,024} + \frac{0,82}{3,096} + \frac{0,01}{0,9}$$

$$\chi^{2} = 0,02 + 0,04 + 0,15 + 0,68 + 0,26 + 0,01$$

$$\chi^{2} = 1,17$$

Berdasarkan taraf signifikan 5% ($\alpha = 0.05$) dengan dk = k - 1 = 6 - 1 = 5 maka $\chi^2(1-\alpha)(k-1) = 11.1$. Kriteria pengambilan keputusannya yaitu: "tolak H_0 jika $\chi^2 \ge \chi^2(1-\alpha)(k-1)$. dengan $\alpha = 0.05$, terima H_0 jika $\chi^2 \le \chi^2(1-\alpha)(k-1)$ ". Oleh karena $\chi^2 \le \chi^2(1-\alpha)(k-1)$ yaitu $1.17 \le 11.1$ maka terima H_0 dan dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal.

Dari hasil uji normalitas yang telah dilakukan pada kedua kelas, diperoleh bahwa hasil *pretest*kemampuan pemecahan masalah matematika kedua kelas berdistribusi normal. Oleh karenanya, pengujian akan dilanjutkan pada uji homogenitas yang berguna untuk melihat bagaimana variansi dari sampel yang diambil untuk mewakili populasi.

b. Pengolahan Tes Akhir (Postest)Kelas Kontrol

Adapun langkah-langkahnya sebagai berikut:

(1) Mentabulasi data ke dalam tabel distribusi frekuensi, menentukan nilai rata-rata (\bar{x}) dan simpangan baku (s)*postest* kelas kontrol

Berdasarkan data skor total dari data kondisi akhir (*postest*) kemampuan pemecahan masalah kelas kontrol, maka berdasarkan skor total, distribusi frekuensi untuk data *postest* kemampuan pemecahan masalah matematika sebagai berikut:

Rentang (R) = nilai tertinggi- nilai terendah = 40 - 18 = 22

Diketahui n = 24

Banyak kelas interval (K) = $1 + 3.3 \log n$

$$= 1 + 3.3 \log 24$$

$$= 1 + 3,3 (1,3802)$$
$$= 1 + 4,5547$$
$$= 5,5547$$

Banyak kelas interval = 5,5547(diambil 5)

Panjang kelas interval (P) $=\frac{R}{K} = \frac{22}{5} = 4.4$ (diambil 5)

Tabel 4.24Daftar Distribusi Frekuensi Nilai Tes Akhir (*Postest*) Kelas Kontrol

Nilai	Frekuensi (f_i)	Nilai Tengah (x_i)	x_i^2	$f_i x_i$	$f_i x_i^2$
18-22	6	20	400	120	2400
23-27	4	25	625	100	2500
28-32	11	30	900	330	9900
33-37	1	35	1225	35	1225
38-42	2	40	1600	80	3200
Total	24	150	4750	665	19225

Sumber: Hasil Pengolahan Data

Dari tabel, diperoleh nilai rata-rata dan varians sebagai berikut:

$$\overline{x_1} = \frac{\sum f_i x_i}{\sum f_i} = \frac{665}{24} = 27,71$$

Varians dan simpangan bakunya adalah:

$$s_1^2 = \frac{n \sum f_i x_i^2 - (\sum f_i x_i)^2}{n(n-1)}$$

$$s_1^2 = \frac{24(19225) - (665)^2}{24(24 - 1)}$$

$$s_1^2 = \frac{461400 - 442225}{24(23)}$$

$$s_1^2 = \frac{19175}{552}$$

$$s_1^2 = 34,74$$

$$s_1 = 5.89$$

Variansnya adalah $s_1^2 = 34,74$ dan simpangan bakunya adalah $s_1 = 5,89$

(2) Uji Normal Postest Kelas Kontrol

Uji normalitas data bertujuan untuk mengetahui apakah data dari kelas dalam penelitian berasal dari populasi yang berdistribusi normal atau tidak. Uji normalitas tersebut dilakukan dengan uji distribusi chi-kuadrat

Adapun hipotesis dalam uji kenormalan data *postest* kelas kontrol adalah sebagai berikut:

 H_0 : sampel berasal dari populasi yang berdistribusi normal

 H_1 : sampel berasal dari populasi yang tidak berdistribusi normal

Berdasarkan perhitungan sebelumnya, untuk postest kelas kontrol diperoleh $\overline{x_1}=27{,}71~{\rm dan}~s_1=5{,}89$

Tabel 4.25 Uji Normalitas Sebaran Postest Kelas Kontrol

Nilai Tes	Batas Kelas	Z Score	Batas Luas Daerah	Luas Daerah	Frekuensi Diharapkan (E_i)	Frekuensi Pengamatan (O_i)
	17,5	-1,73	0,4582			
18-22				0,1476	3,5424	6
	22,5	-0,88	0,3106			
23-27				0,2946	7,0704	4
	27,5	-0,04	0,0160			
28-32				0,307	7,368	11
	32,5	0,81	0,2910			
33-37				0,1605	3,852	1
	37,5	1,66	0,4515			
38-42				0,0425	1,02	2
~	42,5	2,51	0,4940			

Sumber: Hasil Pengolahan Data

Keterangan:

Batas kelas = $Batas \ bawah - 0,5 = 18,5 - 0,5 = 17,5$

Zscore
$$= \frac{x_i - \overline{x_1}}{s_1}$$

$$= \frac{17,5 - 27,71}{5,89}$$

$$= -1.73$$

Batas luas daerah dapat dilihat pada tabel Zscore dalam lampiran

Luas daerah =
$$0.4582 - 0.3106 = 0.1476$$

 $E_i = Luas daerah tiap kelas Interval \times Banyak Data$

$$E_i = 0.1476 \times 24$$

$$E_i = 3,5424$$

Adapun nilai chi-kuadrat hitung adalah sebagai berikut:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

$$\chi^{2} = \frac{(6 - 3,5424)^{2}}{3,5424} + \frac{(4 - 7,0704)^{2}}{7,0704} + \frac{(11 - 7,368)^{2}}{7,368} + \frac{(1 - 3,852)^{2}}{3,852} + \frac{(2 - 1,02)^{2}}{1,02}$$

$$\chi^{2} = \frac{6,0398}{3,5424} + \frac{9,4274}{7,0704} + \frac{13,1914}{7,368} + \frac{8,1339}{3,852} + \frac{0,9604}{1,02}$$

$$\chi^{2} = 1,71 + 1,33 + 1,79 + 2,11 + 0,94$$

$$\chi^{2} = 7,88$$

Berdasarkan taraf signifikan 5% ($\alpha = 0,05$) dengan dk = k - 1 = 5 - 1 = 4 maka $\chi^2(1-\alpha)(k-1) = 9,49$. Kriteria pengambilan keputusannya yaitu: "tolak H_0 jika $\chi^2 \ge \chi^2(1-\alpha)(k-1)$. dengan $\alpha = 0,05$, terima H_0 jika $\chi^2 \le \chi^2(1-\alpha)(k-1)$ ". Oleh karena $\chi^2 \le \chi^2(1-\alpha)(k-1)$ yaitu 7,88 $\le 9,49$ maka terima H_0 dan dapat disimpulkan bahwa sampel berasal dari populasi yang berdistribusi normal.

c. Uji Homogenitas Varian Tes Awal Kelas Eksperimen dan Kontrol

Uji homogenitas varians bertujuan untuk mengetahui apakah sampel dari penelitian ini mempunyai variansi yang sama, sehingga generalisasi dari hasil penelitian yang sama atau berbeda . Hipotesis yang akan diuji pada taraf signifikan $\alpha=0.05$ yaitu:

 H_0 : tidak terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol H_1 : terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol Berdasarkan perhitungan sebelumnya didapat $s_1^2=17,98$ dan $s_2^2=15,85$ Untuk menguji homogenitas sampel sebagai berikut :

$$F_{hit} = \frac{varians\ terbesar}{varians\ terkecil}$$

$$F_{hit} = \frac{s_2^2}{s_1^2}$$

$$F_{hit} = \frac{17,98}{15,85}$$

$$F_{hit}$$
= 1,1344

Keterangan:

 s_1^2 = sampel dari populasi kesatu

 s_2^2 =sampel dari populasi kedua

Selanjutnya menghitung F_{tabel}

$$dk_1 = (n_1 - 1) = 24 - 1 = 23$$

$$dk_2 = (n_2 - 1) = 24 - 1 = 23$$

Berdasarkan taraf signifikan 5% ($\alpha=0.05$) dengan $dk_1=(n_1-1)$ dan $dk_2=(n_2-1)$. Kriteria pengambilan keputusannya yaitu: "Jika $F_{hitung}\leq F_{tabel}$ maka terima H_0 , tolak H_0 jika jika $F_{hitung}\geq F_{tabel}$. $F_{tabel}=F\alpha(dk_1,dk_2)=0.05(23.23)=2.02$ ". Oleh karena $F_{hitung}\leq F_{hitung}\leq F_{hitung}\leq F_{hitung}$

 F_{tabel} yaitu 1,1344 \leq 2,02 maka terima H_0 dan dapat disimpulkan tidak terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol.

d. Uji Kesamaan rata-rata *pretest* kelas eksperimen dan *pretest* kelas kontrol.

Berdasarkan hasil perhitungan sebelumnya, diketahui bahwa data skor tes awal (*pretest*) kelas eksperimen dan kelas kontrol berdistribusi normal dan homogen maka untuk menguji kesamaan dua rata-rata menggunakan uji-t. Hipotesis yang akan diuji pada taraf signifikan $\alpha = 0.05$. Adapun rumusan hipotesis yang akan diuji adalah sebagai berikut:

 H_0 : $\mu_1 = \mu_2$ Nilai rata-rata *pretest* kelas eksperimen dan kelas kontrol tidak berbeda secara signifikan

 $H_1: \mu_1 \neq \mu_2$ Nilai rata-rata pretest kelas eksperimen dan kontrol berbeda secara signifikan

Uji yang digunakan adalah uji dua pihak, maka menurut Sudjana kriteria pengujiannya adalah terima H_0 jika $-t_{(1-\frac{1}{2}\alpha)} < t_{hitung} < t_{(1-\frac{1}{2}\alpha)}$ dalam hal lain H_0 ditolak. Derajat kebebasan untuk daftar distribusi t ialah $(n_1 + n_2 - 2)$ dengan peluang $(1 - \frac{1}{2}\alpha)$. Sebelum menguji kesamaan rata-rata kedua populasi, terlebih dahulu data-data tersebut didistribusikan kedalam rumus varians gabungan sehingga diperoleh:

Kelas Eksperimen
$$n_1 = 24$$
 $\overline{x_1} = 24,38$ $s_1^2 = 17,98s_1 = 4,24$

Kelas Kontrol
$$n_1 = 24$$
 $\overline{x_2} = 23,75$ $s_2^2 = 15,85s_2 = 3,98$

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$s^2 = \frac{(24-1)17,98 + (24-1)15,85}{24+24-2}$$

$$s^2 = \frac{(23)17,98 + (23)15,85}{24 + 24 - 2}$$

$$s^2 = \frac{413,54 + 364,55}{46}$$

$$s^2 = \frac{778,09}{46}$$

$$s^2 = 16,915$$

$$S = 4,11$$

Berdasarkan perhitungan di atas, diperoleh S=4,11 maka dapat dihitung nilai t sebagai berikut:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t = \frac{24,38 - 23,75}{4,11\sqrt{\frac{1}{24} + \frac{1}{24}}}$$

$$t = \frac{0.63}{4.11\sqrt{0.08}}$$

$$t = \frac{0.63}{4.11(0.28)}$$

$$t = \frac{0,63}{1.15}$$

$$t = 0.54$$

Beradasarkan langkah-langkah yang telah diselesaikan di atas, maka di dapat $t_{hitung}=0.54$. Untuk membandingkan t_{hitung} dengan t_{tabel} maka perlu dicari dahulu derajat kebebasan dengan menggunakan rumus:

$$dk = (n_1 + n_2 - 2)$$

$$=(24+24-2)=46$$

Berdasarkan taraf signifikan $\alpha=0.05$ dan derajat kebebasan dk = 46, dari tabel distribusi t diperoleh $t_{(0.975)(44)}=2.02$, sehingga $-t_{(1-\frac{1}{2}\alpha)}<$ $t_{hitung}< t_{(1-\frac{1}{2}\alpha)}$ yaitu -2.02<0.54<2.02, maka sesuai dengan kriteria pengujian H_0 diterima. Dengan demikian, dapat disimpulkan bahwa nilai ratarata pretes siswa kelas eksperimen dan kelas kontrol tidak berbeda secara signifikan.

e. Uji Homogenitas Tes Akhir (Posttes) Kelas Eksperimen dan Kontrol

Uji homogenitas varians bertujuan untuk mengetahui apakah sampel dari penelitian ini mempunyai variansi yang sama, sehingga generalisasi dari hasil penelitian yang sama atau berbeda . Hipotesis yang akan diuji pada taraf signifikan $\alpha=0.05$ yaitu:

 H_0 : tidak terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol H_1 : terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol Berdasarkan perhitungan sebelumnya didapat $s_1^2 = 33,65$ dan $s_2^2 = 34,74$ Untuk menguji homogenitas sampel sebagai berikut :

$$F_{hit} = \frac{varians\ terbesar}{varians\ terkecil}$$

$$F_{hit} = \frac{s_2^2}{s_1^2}$$

$$F_{hit} = \frac{34,74}{33.65}$$

$$F_{hit} = 1,03$$

Keterangan:

 s_1^2 = sampel dari populasi kesatu

 s_2^2 =sampel dari populasi kedua

Selanjutnya menghitung F_{tabel}

$$dk_1 = (n_1 - 1) = 24 - 1 = 23$$

$$dk_2 = (n_2 - 1) = 24 - 1 = 23$$

Berdasarkan taraf signifikan 5% (α = 0,05) dengan dk_1 = $(n_1 - 1)$ dan dk_2 = $(n_2 - 1)$. Kriteria pengambilan keputusannya yaitu: "Jika $F_{hitung} \leq F_{tabel}$ maka terima H_0 , tolak H_0 jika jika $F_{hitung} \geq F_{tabel}$. $F_{tabel} = F\alpha(dk_1, dk_2) = 0,05(23,23) = 2,02$ ". Oleh karena $F_{hitung} \leq F_{tabel}$ yaitu $1,03 \leq 2,03$ maka terima H_0 dan dapat disimpulkan tidak terdapat perbedaan varians antara kelas eksperimen dan kelas kontrol.

f. Pengujian Hipotesis II

Rumusan hipotesis yang akan diuji dengan menggunakan rumus uji-t adalah sebagai berikut:

 $H_0: \mu_1 = \mu_2$: Kemampuan pemecahan masalah matematika siswa yang menggunakan model pembelajaran *problem based learning* sama dengan kemampuan pemecahan masalah matematika siswa tanpa menggunakan model pembelajaran konvensional pada materi statistika SMP Negeri 1 Darussalam.

 $H_1: \mu_1 > \mu_2:$ Kemampuan pemecahan masalah matematika siswa yang menggunakan model pembelajaran *problem based learning* lebih baik daripadakemampuan pemecahan masalah matematika siswa tanpa menggunakan model pembelajaranpembelajaran konvensional pada materi statistika SMP Negeri 1 Darussalam.

uji yang digunakan adalah uji pihak kanan dengan taraf signifikan $\alpha=0.05$ dengan dk = (n_1+n_2-2) . Dengan kriteria pengujian adalah tolak H_0 jika $t_{\rm hitung} \ge t_{\rm tabel}$, dan terima H_1 . Jika $t_{\rm hitung} < t_{\rm tabel}$ terima H_0 tolak H_1 .

Berdasarkakan perhitungan sebelumnya, telah diperoleh:

Kelas Eksperimen
$$n_1 = 24$$
 $\overline{x_1} = 31,54$ $s_1^2 = 33,65s_1 = 5,80$

Kelas Kontrol
$$n_1 = 24$$
 $\overline{x_2} = 27,71$ $s_2^2 = 34,74s_2 = 5,89$

Sehingga diperoleh nilai simpangan baku gabungan sebagai berikut:

$$s_{gab}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$

$$s_{gab}^{2} = \frac{(24 - 1)33,65 + (24 - 1)34,74}{24 + 24 - 2}$$

$$s_{gab}^{2} = \frac{(23)33,65 + (23)34,74}{46}$$

$$s_{gab}^{2} = \frac{773,95 + 799,02}{46}$$

$$s_{gab}^{2} = \frac{1572,97}{46}$$

$$s_{gab}^{2} = 34,195$$

$$s_{aab} = 5.85$$

Selanjutnya menentukan nilai t hitung dengan menggunakan rumus uji t yaitu:

$$t = \frac{\overline{x_1} - \overline{x_2}}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t = \frac{31,54 - 27,71}{5,85\sqrt{\frac{1}{24} + \frac{1}{24}}}$$

$$t = \frac{3,83}{5,85\sqrt{0,08}}$$

$$t = \frac{3,83}{5,85(0,28)}$$

$$t = \frac{3,83}{1,64}$$

$$t = 2,279$$

Jadi, diperoleh $t_{hitung} = 2,279$

Dengan kriteria pengujian taraf $\alpha=0.05$ dengan $dk=(n_1+n_2-2)$ yaitu $dk=24+24-2=46\,$ maka diperoleh t_{tabel} sebagai berikut:

$$t_{tabel} = t_{(1-\infty)}$$

$$= t_{(1-0,05)}$$

$$= t_{(0,95)}$$

$$= 1,675$$

Jadi, diperoleh $t_{tabel} = 1,675$

Berdasarkan kriteria pengujian "tolak H_0 jika $t_{hitung} > t_{tabel}$, dan terima H_1 . Jika $t_{hitung} \le t_{tabel}$ terima H_0 tolak H_1 ." Oleh karena $t_{hitung} > t_{tabel}$ yaitu 2,279 > 1,675 maka terima H_1 dan dapat disimpulkan bahwa kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran *problem based learning* lebih baik daripada kemampuan

pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensionalpada materi statistika SMP Negeri 1 Darussalam.

Berdasarkan tabel 4.26 dan 4.20 tentang indikator kemampuan pemecahan masalah matematika siswa pada *postest* kedua kelas yaitu eksperimen dan kelas kontrol, dapat dibuat perbandingan persentase kemampuan berpikir kritis matematis siswa pada *postest* kedua kelas sebagai berikut:

Tabel 4.26 Perbandingan Persentase Skor *Postest*Kemampuan Pemecahan Masalah Matematika Siswa Kelas Eksperimen dan Kontrol

	Indikator yang di ukur	Kontrol		Eksperimen	
No		Kurang	Baik/Baik sekali	Kurang	Baik/Baik sekali
1	Memahami Masalah	38%	63%	8%	92%
2	Merencanakan Penyelesaian	74%	26%	40%	60%
3	Melaksanakan Penyelesaian	64%	36%	28%	72%
4	Memeriksa kembali/penulisan jawaban	94%	6%	78%	22%

Berikut ini adalah uraian dari tabel 4.27 mengenai hasil *postest*kemampuan pemecahan masalah matematikasiswa kelas eksperimen dan kontrol.

(1) Memahami Masalah

Persentase kemampuan Memahami masalah yang ditunjukkan dengan menulis diketahui maupun yang ditanyakan soal dengan tepat dalam ketegori baik/baik sekali pada kelas eksperimen lebih tinggi 29% dibandingkan

dengan persentase kelas kontrol yaitu kelas eksperimen 92% dan kelas kontrol 63%

(2) Merencanakan Penyelesaian

Persentase Merencanakan Penyelesaian hubungan-hubungan antara pernyataan-pernyataan, pertanyaan-pertanyaan, dan konsep-konsep yang diberikan dalam soal yang ditunjukkan dengan membuat model matematika dengan tepat dan memberi penjelasan dengan tepat dalam ketegori baik/baik sekali pada kelas eksperimen lebih tinggi 34% dibandingkan dengan persentase kelas kontrol yaitu kelas eksperimen 60% dan kelas kontrol 26%

(3) Melaksanakan Penyelesaian

Persentase kemampuan Menggunakan strategi yang tepat dalam menyelesaikan soal, lengkap dan benar dalam melakukan perhitungandalam ketegori baik/baik sekali pada kelas eksperimen lebih tinggi 36% dibandingkan dengan persentase kelas kontrol yaitu kelas eksperimen 72% dan kelas kontrol 36%

(4) Memeriksa kembali/penulisan jawaban

Persentase kemampuan memerikasa kembali/penulisan jawaban dengan tepatdalam ketegori kurang mengalami penurunan dari yang sebelumnya 96% menjadi 16%, sedangkan dalam kategori baik/baik sekali mengalami peningkatan dari yang sebelumnya 22% menjadi 6%.

Berdasarkan hasil tabel 4.26 dan uraian di atas menunjukkann bahwa kemampuan pemecahan masalah matematikasiswa kelas eksperimen terhadap seluruh indikator kemampuan pemecahan masalah matematikadalam kategori baik/baik sekali lebih tinggi 29% dibandingkan dengan persentase terhadap keseluruhan indikator kemampuan pemecahan masalah matematikasiswa kelas kontrol yaitu kelas eksperimen 62% dan kelas kontrol 33%. Berdasarkan hal tersebut dapat disimpulkan bahwakemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran *problem based learning* lebih baik daripada kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensionalpada materi statistika SMP Negeri 1 Darussalam.

B. Pembahasan

1. Kemampuan Pemecahan Masalah Matematis Siswa

Berdasarkan pengujian hipotesis diperoleh t_{hitung} = 13,74 dan t_{tabel} = 1,71. Hasil ini berakibat $t_{hitung} > t_{tabel}$ yaitu 13,74 > 1,71 dengan demikian dapat disimpulkan bahwa H_0 ditolak dan H_1 diterima ini berarti bahwa model *Problem Based Learning* (PBL) dapat meningkatkan kemampuan pemecahan masalah matematika siswa SMP Negeri 1 Darussalam. Adapun deskripsi kemampuan pemecahan masalah matematis siswa juga terlihat peningkatan disetiap indikatornya yaitu 1) memahami masalahdari yang sebelumnya 12% meningkat menjadi 92%; 2) merencanakan penyelesaiandari yang sebelumnya 7% meningkat menjadi 60%; 3) Melaksanakan Penyelesaiandari yang sebelumnya

12% meningkat menjadi 72%; 4) memeriksa kembali/penulisan jawabandari yang sebelumnya 4% meningkat menjadi 22%; Hal ini sejalan dengan kajian teori, bahwa proses kemampuan pemecahan masalah dalam pembelajaran matematika dapat dilakukan melalui model pembelajaran *Problem Based Learning* yaitu pada fase orientasi siswa terhadap masalah, mengorganisasikan siswa untuk belajar, membimbing penyelidikan individu maupun kelompok, mengembangkan dan menyajikan hasil, menganalisis dan mengevaluasi proses pemecahan masalah. Pada fase orientasi siswa terhadap masalah merupakan fase pemunculan masalah dan memotivasi peserta didik untuk terlibat dalam aktifitas pemecahan masalah.

Fase mengorganisasikan siswa untuk belajar merupakan fase pembentukan kelompok yang bervariasi, bertukar informasi/pendapat dapat mengaitkan serta menemukan model matematika, rumus (konsep) bentuk aljabar sehingga meningkatkan kemampuan pemecahan masalah matematis siswa. Hal ini sesuai dengan teori Vygotsky yang menyatakan bahwa interaksi sosial memainkan peran penting dalam perkembangan intelektual siswa. ⁶⁷

Fase membimbing penyelidikan individu maupun kelompok merupakan pengembangan hasil karya peserta didik dalam mendapatkan penjelasan dari pemecahan masalah. Fase mengembangkan (menyajikan) hasil karya merupakan

⁶⁶Trianto, *Model-model Pembelajaran Inovatif Berorientasi Konstruktivistik*, (Jakarta: Prestasi Pustaka, 2007), h.45

⁶⁷Baharuddin, *Teori Belajar dan Pembelajaran*, (Yogyakarta: Ar-Ruzz Media, 2017), h.124

pengembangan hasil karyanya dari apa yang dikerjakan dan mempresentasikan hasil perolehan soal-soal kemampuan pemecahan matematis siswa.

Fase menganalisis dan mengevaluasi proses pemecahan masalah merupakan proses berpikir peserta didik tentang pemecahan masalah yang telah dikerjakan. Berdasarkan pembahasan di atas dan hasil pengujian hipotesis maka diperoleh kesimpulan bahwa model pembelajaran *Problem Based Learning*dapat meningkatkan kemampuan pemecahan masalah matematis siswa. Hal ini sejalan dengan penelitian yang dilakukan oleh Rika Mulyati yang menyatakan bahwa model pembelajaran *Problem Based Learning*dapat meningkatkan kemampuan pemecahan masalah matematis siswa. ⁶⁸

 Perbandingan Kemampuan Pemecahan Masalah MatematikaSiswa Kelas Eksperimen dan Kontrol

Hasil rata-rata *postest* kemampuan pemecahan masalah matematis siswa kelas eksperimen adalah (\overline{x} = 31,54) dan rata-rata *postes*t kelas kontrol adalah (\overline{x} = 27,71)terlihat bahwa nilai rata-rata eksperimen lebih baik dari nilai rata-rata kontrol.Sesuai dengan hipotesis yang telah disebutkan pada rancangan penelitian dan perolehan data yang telah dianalisis didapatkan nilai t untuk kedua kelas yaitu t_{hitung} = 2,279 dan t_{tabel} = 1,67. Hasil ini berakibat t_{hitung} > t_{tabel} yaitu 2,279 >1,67 sehingga berdasarkan kriteria penolakan H₀ dapat diputuskan bahwa H₀ ditolak, Oleh karenanya dapat ditarik kesimpulan bahwakemampuan pemecahan masalah matematika siswa yang diajarkan dengan model

_

⁶⁸Rika ulyati, *Meningkatkan Kemampuan Pemecahan Masalah Matematis Melalui Model Pembelajaran PB*. Diakses pada tanggal 23 November 2017 dari situs http://sesiomadika.890m.com/Prosiding/91NurLaelaFitri-SESIOMADIKA-2017.pdf.

pembelajaran *problem based learning* lebih baik daripada kemampuan pemecahan masalah matematika siswa yang diajarkan dengan model pembelajaran konvensionalpada materi statistika SMP Negeri 1 Darussalam.

Adapun indikator yang peningkatannya paling sedikit adalah indikator Memeriksa kembali/penulisan jawaban, yaitu indikator yang mencakup membuktikan kembali hasil yang di peroleh. Hal ini terjadi dikarenakan siswa kurang mampu mengidentifikasi unsur-unsur yang saling berkaitan sehingga penyelesaian yang dilakukan tidak saling terkait yang berakibat siswa tidak mampu membuktikan hasil yang diperoleh. Tahap menyelesaikan masalah juga mempengaruhi tahap Memeriksa Kembali, ketika kemampuan analisis dan evaluasi rendah akan berakibat kepada rendahnya pada kemampuan mengambil kesimpulan yaitu kemampuan Memeriksa kembali/penulisan jawaban. Hal ini terjadi tahap pengambilan kesimpulan membutuhkan informasi yang akurat dari hasil analisis dan evaluasi permasalahan. Ketika pada tahap analisis dan evaluasi terjadi kesalahan walau sedikit, tentu hal ini akan berimbas kepada tahap pengambilan kesimpulan yang mengacu pada indikator analisis dan evaluasi tersebut.

Model pembelajaran *Problem Based Learning* merupakan model pembelajaran yang berpusat pada siswa sehingga pada proses pembelajaran siswa lebih aktif daripada guru, guru hanya sebagai fasilitator. Seperti yang sudah diuraikan di atas bahwa model pembelajaran *Problem Based Learning* dilakukan secara berkelompok sehingga memudahkan siswa untuk saling bekerja sama dan bertukar informasi/pendapat. Sedangkan model pembelajaran konvensional

berpusat pada guru, siswa hanya menerima dari guru saja, kurangnya timbal balik antara guru dan siswa. Oleh karenanya terdapat perbandingan kemampuan pemecahan masalah matematis siswa yang diterapkan model *Problem Based Learning* dengan siswa yang memperoleh pembelajaran model konvensional.

BAB V

PENUTUP

A. Kesimpulan

Berdasarkanhasilpenelitian yang dilaksanakanmengenaipembelajaranmatematikandenganmenggunakanpenerapan model pembelajaran*Problem Based Learning* terhadapkemampuanpemecahan masalah matematikasiswaSMP Negeri 1

Darussalam.diperolehkesimpulansebagaiberikut:

- 1. Berdasarkanhasilujihipotesisdiperoleh t_{hitung} lebihdari t_{tabel} yaitu13,74 >
 - 1,71dengandemikiandapat disimpulkan bahwa H_0 ditolak dan H_1 diterimainiberartibahwa model PembelajaranProblem Based Learning dapatmeningkatkankemampuanpemecahanmasalahmatematikasiswa SMP Negeri 1

Darussalam. Adapundeskripsipeningkatan kemampuan pemecahan masalah matemat ikasiswapada kategori baik/baiksekali pada setiapin dikatoryaitu:

a. MemahamiMasalah, PersentasekemampuanMemahamimasalah yang ditunjukkandenganmenulisdiketahuimaupun yang ditanyakansoaldengantepatdalamketegorikurangmengalamipenurunandari yang sebelumnya 89% menjadi 8%, sedangkandalamkategoribaik/baiksekalimengalamipeningkatandari yang sebelumnya 12% menjadi 92%.

- b. MerencanakanPenyelesaian, PersentaseMerencanakanPenyelesaianhubungan-hubunganantarapernyataan-pernyataan, pertanyaan-pertanyaan, dankonsep-konsep yang diberikandalamsoal yang ditunjukkandenganmembuat model matematikadengantepatdanmemberipenjelasandengantepatdalamketegorikura ngmengalamipenurunandari yang sebelumnya 88% menjadi 28%, sedangkandalamkategoribaik/baiksekalimengalamipeningkatandari yang sebelumnya 12% menjadi 72%.
- c. MelaksanakanPenyelesaian, PersentasekemampuanMenggunakanstrategi yang tepatdalammenyelesaikansoal,
 lengkapdanbenardalammelakukanperhitungandalamketegorikurangmengalami penurunandari yang sebelumnya 77% menjadi 39%, sedangkandalamkategoribaik/baiksekalimengalamipeningkatandari yang sebelumnya 23% menjadi 61%.
- d. Memeriksakembali/penulisanjawaban,
 - Persentasekemampuanmemerikasakembali/penulisanjawabandengantepatdala mketegorikurangmengalamipenurunandari yang sebelumnya 96% menjadi 78%, sedangkandalamkategoribaik/baiksekalimengalamipeningkatandari yang sebelumnya 4% menjadi 22%.
- 2. Berdasarkanhasilujihipotesiskedua diperoleht_{hitung}lebihdarit_{tabel}yaitu2,279 > 1,67 berada pada daerah penolakan H_0 . Hal inimenunjukkanbahwa kemampuanpemecahanmasalahmatematikasiswa yang diajarkandengan model

pembelajaran*problem based learning* lebihbaikdaripadakemampuanpemecahanmasalahmatematikasiswa yang diajarkandengan model pembelajarankonvensionalpadamateristatistika SMP Negeri 1 Darussalam.

B. Saran

Berdasarkantemuandalampenelitianini, terdapatbeberapa saran yang dapatpenulisberikan:

- 1. Model *Problem Based Learning* dapatdijadikansebagaisalahsatucarabelajarbarubagisiswauntukmeningkatkankema mpuanpemecahanmasalahmatematika.
- 2. Bagi guru, sebagaimasukanatauinformasiuntukmemperolehgambaranmengenaipenerapan model *Problem Based Learning*dalamupayameningkatkankemampuanpemecahanmasalahmatematikasis wa, sehinggadapatdijadikanalternatifdalampembelajaran di kelas.
- 3. Bagisekolah, sebagaibahansumbanganpemikirandalamrangkamemperbaiki proses pembelajaran matematikasertauntukmeningkatkankemampuanpemecahanmasalahmatematikasis wa.

- 4. Bagipenelitiselanjutnya,
 - hasilpenelitianinidapatdijadikansebagaisalahsatusumberinformasidanbahanuntuk mengadakanpenelitian yang lebihlanjut.
- 5. Disarankankepadapihak lain untukmelakukanpenelitian yang samapadamateri yang berbedasebagaibahanperbandingandenganhasilpenelitianini.

DAFTAR PUSTAKA

- Arends. 2008. Language to Tach. Jogjakarta: Pustaka Pelajar.
- Arikunto, Suharsimi. 2010. Dasar-Dasar Evaluasi Pendidikan, Jakarta : Bima Aksara.
- Baharuddin Paloloang, M. Fachri. Sebtember 2014. *Penerapan Model Problem Based Learning (Pbl) Untuk Meningkatkan Hasil Belajar Siswa Pada Materi Panjang Garis Singgung Persekutuan Dua Lingkaran Di Kelas VIII SMP Negeri 19 Palu*, Vol 2, No 1.Diakses 28 November 2017 dari situs: http://download.portalgaruda.org/article.
- Depdiknas. 2006. *Model-Model Pembelajaran Matematiaka*, Jakarta: Direktorat Jenderal Pendidikan Dasar dan Menengah.
- Gd. Gunantara, Md Suarjana, & Pt. Nanci Riastini. 2014. *Penerapan Model Pembelajaran Problem Based Learning Untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika Siswa Kelas V*, Vol. 2 No.1. Diakses 28 November 2017 dari situs: https://ejournal.undiksha.ac.id/index.
- Hajar, Ibnu. 1996. Dasar-dasar Metodologi Penelitian Kuntitatif Dalam Penddikan.
- Hamalik, Oemar. 2001. Proses Belajar Mengajar. Jakarta: Bumi Aksara.
- Hudojo, Herman. 1988. mengajar Belajar Matematika. Jakarta.
- Kemendikbud. 2013. Matematika. Jakarta: Politeknik Negeri Media Kreatif.
- Muhadjir, Noeng. 1996. *Metodologi Penelitian Kualitatif.* Yogyakarta: Rakesarasin.
- Nisak, Khairun. 2015. Penerapan Model Pembelajaran Problem Based Learning Di Kelas VII Smp Negeri 8 Banda Aceh 2015/2016. Banda Aceh: Universitas Syiah Kuala.
- Rahman, Abdur. 2017. *Matematika untuk Kelas VIII*, (Jakarta: Kementrian Pendidikan dan Kebudayaan.
- Slameto. 2010. *Belajar dan Faktor-Faktor yang Mempengaruhinya*, Jakarta: Rineka Cipta.
- Sanjaya, Wina. 2008. Strategi Pembelajaran Berorientasi Standar Pendidikan, Jakarta: Kencana.

- Sugiyono. 2012. *Metode Penelitian Kombinasi (Mixed Methods)*. Bandung: Alfabeta.
- Suyono dan Harianto. 2011 Belajar dan Pembelajaran. Bandung: Remaja Rosda.
- Thobroni, Muhammad. 2013 Belajar & Pembelajaran, Jogjakarta: Ar-Ruzz Media.
- Trianto. 2013. *Mendesain Model Pembelajaran Inovatif-Progresif.* Jakarta: Kencana.
- Wulan Dari, Dwi Ayu 2015*Peningkatan Pemahaman Konsep dan Hasil Belajar Matematika Melalui Model Pembelajaran Problem Based Learning*. Diakses pada tanggal 31 Oktober 2017 dari situs: http://eprints.ums.ac.id/39286/1/artikel.
- Yustira, Tiya. 2017. Penerapan Model Pembelajaran Problem Based Learning Pada Materi Statistika Di Kelas XI Sma Negeri 12 Banda Aceh 2016/2017. Banda Aceh: Fakultas KIP Universitas Syiah Kuala.

TENTANG

PENGANGKATAN PEMBIMBING SKRIPSI MAHASISWA FAKULTAS TARBIYAH DAN KEGURUAN **UIN AR-RANIRY BANDA ACEH**

DEKAN FAKULTAS TARBIYAH DAN KEGURUAN UIN AR-RANIRY BANDA ACEH

Menimbang

- : a. bahwa untuk kelancaran bimbingan skripsi dan ujian munaqasyah mahasiswa pada Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry Banda Aceh maka dipandang perlu menunjuk Pembimbing Skripsi tersebut yang dituangkan dalam Surat Keputusan Dekan:
- bahwa Saudara yang tersebut namanya dalam Surat Keputusan ini dianggap cakap dan memenuhi syarat untuk diangkat sebagai Pembimbing Skripsi.

Mengingat

- Undang-Undang Nomor 20 Tahun 2003, tentang Sistem Pendidikan Nasional;
- Undang-Undang Nomor 14 Tahun 2005, tentang Guru dan Dosen;
- Undang-Undang Nomor 12 Tahun 2012, tentang Pendidikan Tinggi;
- Peraturan Pemerintah Nomor 74 Tahun 2012 tentang Perubahan atas Peraturan Pemerintah RI Nomor 23 Tahun 2005 tentang Pengelolaan Keuangan Badan Layanan Umum;
- Peraturan Pemerintah Nomor 4 Tahun 2014 tentang Penyelenggaraan Pendidikan Tinggi dan Pengelolaan Perguruan 5. Tinggi;
- Peraturan Presiden RI Nomor 64 Tahun 2013, tentang Perubahan IAIN Ar-Raniry Banda Aceh menjadi UIN Ar-Raniry Banda Aceh;
- Peraturan Menteri Agama Nomor 12 Tahun 2014, tentang Organisasi dan Tata Kerja UIN Ar-Raniry Banda Aceh;
- Peraturan Menteri Agama Nomor 21 Tahun 2015, tentang Statuta UIN Ar-Raniry Banda Aceh;
- Keputusan Menteri Agama Nomor 492 Tahun 2003, tentang Pendelegasian Pengangkatan, Wewenang, Pemindahan dan Pemberhentian PNS di Lingkungan Departemen Agama Republik Indonesia;
- Keputusan Menteri Keuangan Nomor 293/KMK.05/2011 tentang Penetapan IAIN Ar-Raniry Banda Aceh pada Kementerian Agama sebagai Instansi Pemerintah yang Menerapkan Pengelolaan Badan Layanan Umum;
- 11. Keputusan Rektor UIN Ar-Raniry Banda Aceh Nomor 01 Tahun 2015, tentang Pendelegasian Wewenang Kepada Dekan dan Direktur Pascasarjana di Lingkungan UIN Ar-Raniry Banda Aceh.

Memperhatikan

: Keputusan Sidang/Seminar Proposal Skripsi Program Studi Pendidikan Matematika Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry Banda Aceh, tanggal 15 Januari 2018.

MEMUTUSKAN

Menetapkan

PERTAMA

: Menunjuk Saudara:

Drs. Munirwan Umar, M.Pd. Novi Trina Sari, S.Pd.I., M.Pd. sebagai Pembimbing Pertama sebagai Pembimbing Kedua

untuk membimbing Skripsi:

Nama

1.

: Vina Yulianda : 261324676

NIM Program Studi

: Pendidikan Matematika

Judul Skripsi

: Penerapan Model Pembelajaran Problem Based Learning untuk Meningkatkan Kemampuan

Dekar

Pemecahan Masalah Matematika Siswa SMP Negeri 1 Darussalam.

KEDUA

: Pembiayaan honorarium Pembimbing Pertama dan Pembimbing Kedua tersebut di atas dibebankan pada DIPA UIN Ar-

KETIGA

Raniry Banda Aceh ; : Surat Keputusan ini berlaku sampai Semester Genap Tahun Akademik 2017/2018;

KEEMPAT

: Surat Keputusan ini berlaku sejak tanggal ditetapkan dengan ketentuan bahwa segala sesuatu akan diubah dan diperbaiki

kembali sebagaimana mestinya, apabila kemudian hari ternyata terdapat kekeliruan dalam Surat Keputusan ini.

Tembusan

Rektor UIN Ar-Raniry Banda Aceh;

Ketua Program Studi Pendidikan Malematika FTK;

Pembimbing yang bersangkutan untuk dimaklumi dan dilaksanakan;

Mahasiswa yang bersangkutan.

1 Februari 2018 M 16 Jumadil Awal 1439 H

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI AR-RANIRY BANDA ACEH FAKULTAS TARBIYAH DAN KEGURUAN

Jl. Sycikh Abdur Rauf Kopelma Darussalam Banda Acch Telp: (0651) 7551423 - Fax. (0651) 7553020 Situs : www.tarbiyah.ar-raniry.ac.id

Nomor: B- 3989 /Un.08/TU-FTK/ TL.00/04/2018

10 April 2018

Lamp :

Hal : N

Mohon Izin Untuk Mengumpul Data

Menyusun Skripsi

Kepada Yth.

Di -

Tempat

Dekan Fakultas Tarbiyah dan Keguruan (FTK) UIN Ar-Raniry Darussalam Banda Aceh dengan ini memohon kiranya saudara memberi izin dan bantuan kepada:

Nama

: Vina Yulianda

NIM

: 261 324 676

Prodi / Jurusan

: Pendidikan Matematika

Semester

· X

Fakultas

: Tarbiyah dan Keguruan UIN Ar-Raniry Darussalam.

Alamat

: Jl. Lingkar Kampus UIN Lr. Ibnu Sina No. 15B, Tanjung Selamat Aceh Besar

Untuk mengumpulkan data pada:

SMP Negeri I Darussalam

Dalam rangka menyusun Skripsi sebagai salah satu syarat untuk menyelesaikan studi pada Fakultas Tarbiyah dan Keguruan UIN Ar-Raniry yang berjudul:

Penerapan Model Pembelajaran Problem based Learning untuk Meningkatkan Kemampuan Pemecahan Masalah Matematika Siswa SMP Negeri I Darussalam

Demikianlah harapan kami atas bantuan dan keizinan serta kerja sama yang baik kami ucapkan terima kasih.

Kepala Bagian Tata Usaha,

M. Said Parzah Ali

An. Dekan,

BAG UMUM BAG UMUN

Kode 7457

PEMERINTAH KABUPATEN ACEH BESAR DINAS PENDIDIKAN DAN KEBUDAYAAN

Jalan T. Bachtiar Panglima Polem, SH. Kota Jantho (23918) Telepon. (0651)92156 Fax. (0651) 92389 Email: dinaspendidikanacehbesar@gmail.com Website: www.disdikacehbesar.org

Nomor

: 070/1161/2018

Lamp Hal

: Izin Pengumpulan Data

Kota Jantho, 11 April 2018

Kepada Yth,

Kepala SMP Negeri 1 Darussalam

Kabupaten Aceh Besar

di -Tempat

Dengan hormat,

Sehubungan dengan Surat Dekan Fakultas Tarbiyah dan Keguruan (FTK) UIN Ar-Raniry Darussalam Banda Aceh Nomor: B-3989/Un.08/TU-FTK/TL.00/04/2018 tanggal 10 April 2018, Kepala Dinas Pendidikan dan Kebudayaan Kabupaten Aceh Besar memberi izin kepada:

Nama

: Vina Yulianda

MIM

: 261 324 676

Prodi / Jurusan

: Pendidikan Matematika

Semester

: X

Untuk melakukan penelitian dan mengumpulkan data di SMP Negeri 1 Darussalam Kabupaten Aceh Besar untuk keperluan penyusunan Skripsi yang berjudul:

"PENERAPAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 DARUSSALAM"

Setelah mengadakan penelitian 1 (satu) eks laporan dikirim ke SMP Negeri 1 Darussalam Kabupaten Aceh Besar.

> a.n. Kepala Dinas Pendidikan dan Kebudayaan Kabupaten Aceh Besar, Kasi Kelembagaan Sarana dan Prasarana Bidang Pendidikan Dasar

> > Sanusi

NIP. 19731116 200112 1 004

1. Dekan Fakultas Tarbiyah dan Keguruan (FTK) UIN Ar-Raniry Darussalam Banda Aceh;

2. Arsip.

PEMERINTAH KABUPATEN ACEH BESAR DINAS PENDIDIKAN DAN KEBUDAYAAN SMP NEGERI 1 DARUSSALAM

Jln.Lambaro Angan Nomor : 42 Kabupaten Aceh Besar

Telp. (0651) 7551879 Faks..... Email: smpnegerisatu_darussalam@ymail.com

SURAT KETERANGAN NOMOR: 421/327/2018

Sehubungan dengan Surat Dinas Pendidikan dan Kebudayaan Kabupaten Aceh Besar No: 070 / 1161 / 2018, tanggal 11 April 2018 telah datang pada SMP Negeri 1 DarussalamAceh Besar:

Nama

: Vina Yulianda

NIM

: 261 324 676

Prodi/Jurusan

: Pendidikan Matematika

Semester

: X

Untuk Mengumpulkan Data Penelitian yang berjudul :

"PANERAPAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING UNTUK MENINGKATAKAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA SMP NEGERI 1 DARUSSALAM"

Telah melakukan Penelitian pada tanggal 13 s/d 20 April 2018

Demikian surat keterangan ini dibuat agar dapat dipergunakan seperlunya.

Lambaro Angan, 11 Juli 2018

Kepala Sekolah,

Nip 196201 19198403 1 011

RENCANA PELAKSANAAN PEMBELAJARAN(RPP) KELAS EKSPERIMEN

NamaSekolah :SMP Negeri 1 Darussalam

Mata pelajaran : Matematika

TahunAjaran : 2017-2018

Kelas/Semester :VIII/II (Genap)

Materi : Statistika

AlokasiWaktu :7 x 40 menit(3 x pertemuan)

A. KompetensiInti (KI)

KI 1 : Menghargai dan menghayatiajaran agama yang dianutnya.

- KI 2 :Menghargai dan menghayatiperilakujujur, disiplin, tanggungjawab, peduli (toleransi, gotong royong), satuan, percaya diri, dalam berinteraksi secara efektif dengan lingkungan sosial dan alam dalam jangkauan pergaulan dan keberadaannya.
- KI 3 :Memahami pengetahuan (faktual, konseptual, dan prosedural) berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya terkait fenomena dan kejadian tampak mata.
- KI 4 : Mencoba, mengelolah, dan menyaji dalam ranah konkret (menggunakan, mengurai, merangkai, memodifikasi, dan membuat) dan ranah abstrak (menulis, membaca, menghitung, menggambar, dan mengarang) sesuai dengan yang dipelajari di sekolah dan sumber yang sama dalam sudut pandang/teori.

B. KompetensiDasar (KD) dan Indikator Pencapaian Kompetensi

KompetensiDasar	IndikatorPencapaianKompetensi
3.10Menganalisis databerdasarkan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, membuat keputusan, dan membuat prediksi.	3.10.1Menentukan nilai rata-rata (<i>mean</i>) dariberbagaijenis data 3.10.2Menentukan mediandariberbagaijenis data 3.10.3Menentukan modus dariberbagaijenis data
4.10Menyajikan dan menyelesaikan masalah yang berkaitan dengan distribusi data, nilai rata-rata, median, modus, dan sebaran data untuk mengambil kesimpulan, membuat keputusan, dan membuat prediksi.	yang berkaitan dengan distribusi data, rata-rata, median, modus, dan sebarang data dari kumpulan data yang diberikan.

C. Tujuan Pembelajaran

1. Pertemuan pertama

Melalui kegiatan diskusi diharapkan peserta didik terlibat aktif dalam kegiatan pembelajaran berbasis masalah dan bertanggungjawab dalam menyampaikan pendapat, menjawab pertanyaan, memberi saran dan kritik, serta peserta didik mampu:

- a. Mengamati masalah yang berkaitan dengan rata-rata yang ada dalam kehidupan nyata seperti yang terdapat pada LKPD 1
- b. Menentukan nilai rata-rata dari masalah yang terdapat pada LKPD 1

2. Pertemuan kedua

Melalui kegiatan diskusi diharapkan peserta didik terlibat aktif dalam kegiatan pembelajaran berbasis masalah dan bertanggungjawab dalam

menyampaikan pendapat, menjawab pertanyaan, memberi saran dan kritik, serta peserta didik mampu:

- a. Mengamati masalah yang berkaitan dengan median yang biasa ditemukan dalam kehidupan nyata seperti yang terdapat pada LKPD 2
- b. Menentukan median dari masalah yang terdapat pada LKPD 2

3. Pertemuan kedua

Melalui kegiatan diskusi diharapkan peserta didik terlibat aktif dalam kegiatan pembelajaran berbasis masalah dan bertanggungjawab dalam menyampaikan pendapat, menjawab pertanyaan, memberi saran dan kritik, serta peserta didik mampu:

- c. Mengamati masalah yang berkaitan dengan modus yang biasa ditemukan dalam kehidupan nyata seperti yang terdapat pada LKPD 3
- d. Menentukan Modus dari masalah yang terdapat pada LKPD 3

D. MateriPembelajaran.

1. Fakta

- a. Mengelolah data dengan menentukan nilai rata-rata
- b. Mengelolah data dengan menentukan nilai median
- c. Mengelolah data dengan menentukan nilai modus

2. Konsep

- a. Pengertian rata-rata
- b. Pengertian median
- c. Pengertian modus

3. Prinsip

- a. Rata-rata adalah nilai yang diperoleh dengan menjimlahkan semua bagian data dengan banyaknya data
- b. Rumus menghitung rata-rata dari data tunggal

misalnya $x_1,x_2,x_3,x_4,x_6,\ldots,\ldots x_n$ adalah suatu data. Rata-rata (mean data tersebut disimbolkan \bar{x} .

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_6 + \dots + x_n}{n}$$
, dengan n adalah banyaknya data, n $\neq 0$

c. Menghitung rata-rata dari sekelompok data

Apabila f_1 adalah banyaknya data bernilai x_1 , f_2 adalah banyaknya data yang bernilai x_2 ,...., f_n adalah banyaknya data bernilai x_n , maka rata-rata dari seluruh data adalah:

$$\bar{\chi} = \frac{f_1 \cdot x_1 + f_2 \cdot x_2 + \cdots f_n \cdot x_n}{f_1 + f_2 + \cdots + f_n}$$

- d. Median adalah nilai data yang letaknya atau posisinya berada di tengahtengah dta yang diurutkan dari nilai terkecil sampai terbesar
- e. Menentukan median dari data tunggal

Misalkan
$$x_1, x_2, x_3, x_4, \dots, x_n$$
adalah suatu data, dengan $x_1 \le x_2 \le x_3 \le x_4 \le \dots, \dots \le x_n$

• Jika data ganjil, median adalahnilai data ke $\frac{n+1}{2}$, yaitu:

$$Me = \frac{X_{n+1}}{2}$$

• Jika n genap, median adalah rata-rata dari data ke $\frac{n}{2}$ dengan data ke $\frac{n+1}{2}$, sehingga

$$Me = \frac{1}{2} \left(\chi_{\underline{n}} + \chi_{\underline{n}+1} \right)$$

f. Menentukan median dari data kelompok

Dengan rumus: Me = Tb +
$$\left[\frac{n}{2} - F\right]$$
. p

- g. Modus dari suatu data adalah nilai yang paling banyak muncul atau frekuensi tertinggi
- h. Menentukan modus dari data tunggal

Untuk menentukan modus dari data tunggal kita cukup mengurutkan data tersebut, kemudian mencari nilai yang frekuensinya paling besar.

i. Menentukan modus dari data kelompok

Dengan rumus: Mo = Tb +
$$\left[\frac{b_1}{b_1+b_2}\right]$$
. p

4. Prosedur

- a. Menentukan nilai rata-rata
- b. Menentukan median
- c. Menentukan modus

E. Model/Metode/Pendekatan Pembelajaran.

Model Pembelajaran : ProblemBased Learning (PBL)

Pendekatanpembelajaran : Pendekatansaintifik (scientific).

MetodePembelajaran: Pemecahanmasalah, diskusi kelompok, tanyajawab,

tugas.

F. Media Pembelajaran

- 1. Papantulis,
- 2. Sepidol
- 3. LKPD (terlampir)
- 4. Kertas plano
- 5. Power point

G. SumberBelajar

- 1. BukuPeganganSiswaMatematikaKurikulum 2013revisikelas VIII semester 2.
- 2. BukuPeganganGuruMatematikaKurikulum 2013 revisikelasVIII.
- 3. LembarKerja Peserta Didik (LKPD).

H. Kegiatan Pembelajaran.

• PertemuanPertama.

Fase/Sintaks	KegiatanBelajar	Waktu		
	Kegiatan Pendahuluan			
	1. Guru mengucapkansalam.	menit		
	2. Guru menanyakankabar dan			
	memintasalahseorangpesertadidikuntukmemimpin			
	doa, kemudian			
	gurumengecekkehadiranpesertadidik.			
	3. Memintapeserta didik menyimpan benda-benda			
	yang tidak berhubungan dengan pelajaran dan			
	menyiapkan buku panduan, alat tulis serta benda			
	lainnya yang berhubungan dengan pelajaran.			
	Apersepsi:			
	4. Dengan tanya jawab, guru mengecek pemahaman			
	peserta didik tentang materi prasyarat yang			
	berkaitan dengan materi rata-rata. Materi			
	prasyarat untuk pertemuan kali ini adalah materi			
	penyajian data			
	Contoh Pertanyaan:			
	1) Misalnya suatu kelas di dalamnya terdapat			

5 orang siswa yang memakai ukuran sepatu berbeda-beda, si V memakai ukuran sepatu nomor 37, si B memakai ukuran sepatu nomor 38, si H memakai ukuran sepatu nomor 38, si N memakai ukuran sepatu 39 dan si L memakai ukuran sepatu 38.

Bagaimana cara menyajikan data tersebut dalam diagram batang?

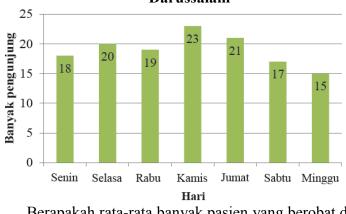
- 2) Apakah data di atas dapat ditentukan dengan mencari nilai rata-rata?
- 3) Bagaimana cara menentukan nilai rata-rata dari data di atas?
- 4) Dari data di atas tentukan nilai rata-rata dari 3 orang siswa, jika diurutkan ukuran sepatunya dari yang terkecil sampai yang terbesar!

Motivasi:

 Memotivasi peserta didik dengan menyampaikan tujuan dan manfaat mempelajari rata-rata dalam kehidupan sehari-hari, misalnya nilai rapor, jumlah penduduk, dan lain-lain.

Mencari nilai rata-rata hasil panen apel pada gambar di bawah.

PAERAH		HASIL PANEN	
TAEKAH		APEL (Kg)	
Α (000000000	85	
В	99999	50	
с (9666666	70	
D (200000	55	
Keterang	= 100 Kg		
	= 50 Kg		


- Guru menyampaikan tujuan pembelajaran, peserta didik diharapkan dapat menentukan nilai rata-rata dari suatu data yang diberikan.
- 7. Guru menyampaikan bahwa pembelajaran hari ini akan dilaksanakan dengan model *Problem Based Learning* (PBL) serta menjelaskan kepada siswa setiap langkah-langkah pembelajaran menggunakan *Problem Based Learning* (PBL).

Kegiatan Inti

. Guru menayangkan permasalahan terkait dengan rata-rata melalui *Power Point Texs* (PPT)

± 60 menit

Banyak Pengunjung Pasien Klinik Aisya Darussalam

OrientasiSisw apadaMasalah

Fase 1:

Berapakah rata-rata banyak pasien yang berobat di Klinik Aisya Darussalam dalam waktu satu minggu?

- 2. Peserta didik mencermati permasalahan yang berkaitan dengan rata-rata yang di tayangkan guru melalui *power point*. (Mengamati)
- 3. Peserta didik diminta untuk mengajukan pertanyaan berdasarkan pengamatan yang dilakukan. (Menanya)
- 4. Apabila proses bertanya dari peserta didik kurang lancar, guru melontarkan pertanyaan penuntun/pancingan secara bertahap.

Contoh pertanyaan:

- Apa yang terlintas di pikiran kalian setelah melihat gambar dan masalah yang ditampilkan?
- Bagaimana cara menentukan nilai rata-rata banyak pasien yang berobat di Klinik Aisya Darussalam dalam waktu satu minggu ?
- Peserta didik dibagi menjadi beberapa kelompok terdiri dari 4 atau 5 orang.
- 6. Peserta didik bergabung dengan kelompok yang telah dibagikan
- 7. Guru memberikan permasalahan terkait dengan menentukan nilai rata-rata melalui pemberian LKPD.
- 8. Peserta didik dibimbing dan diarahkan untuk mendefinisikan masalah terkait rata-rata.
- 9. Peserta didik mencari informasi dengan berbagai cara melalui diskusi kelompok (Menalar)
- 10. Peserta didik diminta untuk melaksanakan

Fase 2: Mengorganisa sikanSiswaBel ajar.

Fase 3: Membimbingp enyelidikanind ividudankelom pok.

eksperimen	untuk	mendapatkan	penjelasan	dan
pemecahan	masalal	1		

11. Peserta didik secara berkelompok melaksanakan eksperimen untuk mendapatkan penjelasan dan pemecahan masalah terkait dengan rata-rata. (Mencoba)

Fase 4: Mengembangk andanmenyaji kanhasilkarya.

- 12. Peserta didik menyusun solusi atau jawaban dari permasalahan yang diberikan.
- 13. Peserta didik dibimbing dan diarahkan dlam kegiatan yang sedang dilakukan.
- 14. Peserta didik diinformasikan bahwa waktu untuk menyelesaikan LKPD telah selesai
- 15. Peserta didik menyiapkan hasi diskusi dan mamajangkan hasil kerja LKPD kelompoknya pada tempat yang berbeda.

(Mengkomunikasikan)

- 16. Tiap kelompok berkunjung kekelompok lainnya, sedangkan satu orang tiap kelompok melayani pengunjung untuk berdiskusi tentang hasil kerja kelomponya (dapat menerima masukkan dari pengunjung). Peserta didik didorong agar mengunjungi kelompok lainnya.
- 17. Peserta didik secara individu dipersilakan untuk bertanya dan menanggapi kembali tentang hasil kerja kelompok lain
- Peserta didik diberikan penguatan terhadap hasil kerjanya.
- 19. Siswa diminta duduk kembali ke tempat masing-

Fase 5: Menganalisisd anmengevalua si proses pemecahanma salah

masing.	
Penutup	± 10
1. Peserta didik bersama guru menyimpulkan hasil	menit
belajar dengan mendefinisikan rata-rata dan rumus	
yang digunakan dalam menentukan rata-rata	
2. Apabila kesimpulan yang disampaikan peserta didik	
belum tepat atau masih ada yang kurang, guru	
memberikan penguatan.	
3. Menanyakan kepada peserta didik hal yang belum	
di pahami terkait dengan rata-rata	
4. Peserta didik diingatkan untuk mengulang pelajaran	
dirumah	
5. Peserta didik diberikan tugas rumah oleh guru	
terkait dengan rata-rata. (terlampir)	
6. Guru menyampaikan materi yang akan dipelajari	
pada pertemuan yang akan datang yaitu	
menentukan median dan modus dari suatu data	
7. Guru menutup pelajaran dengan mengucapkan	
salam.	

• PertemuanKedua

Fase/Sintaks		KegiatanBelajar		Waktu
	Kegiatan Pendal	nuluan		± 15
	1. Guru mengucapkansalam.			menit
	2. Guru	menanyakankabar	dan	
	memintasalahseorangpesertadidikuntukmemimpin			
	doa,		kemudian	

gurumengecekkehadiranpesertadidik.

3. Memintapeserta didik menyimpan benda-benda yang tidak berhubungan dengan pelajaran dan menyiapkan buku panduan, alat tulis serta benda lainnya yang berhubungan dengan pelajaran.

Apersepsi:

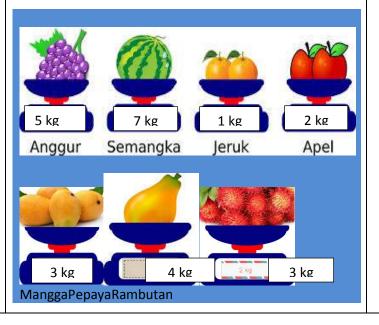
4. Dengan tanya jawab, guru mengecek pemahaman peserta didik tentang materi prasyarat yang berkaitan dengan materi median. Materi prasyarat untuk pertemuan pertama kali ini adalah rata-rata yang dipelajari pada pertemuan sebelumnya.

Contoh Pertanyaan:

- 1) Berapakah rata-rata darihasiltesbelajarsiswa yang berurutan 55, 60, 70, 70, 71, 80, 82, 90, 98?
- 2) Tentukan rata-rata hasil tes belajar siswa di atas 70?

Motivasi:

5. Memotivasi peserta didik dengan menyampaikan tujuan dan manfaat mempelajari median dalam kehidupan sehari-hari, misalnya jumlah penduduk,nilai raport dan lain-lain. Selain itu, di lingkungan sekitar, juga banyak yang berkaitan dengan median seperti pada gambar berikut.


- Guru menyampaikan tujuan pembelajaran, peserta didik diharapkan dapat menentukan nilai median dari suatu data yang diberikan.
- 9. Guru menyampaikan bahwa pembelajaran hari ini akan dilaksanakan dengan model *Problem Based Learning* (PBL) serta menjelaskan kepada siswa setiap langkah-langkah pembelajaran menggunakan *Problem Based Learning* (PBL).

Kegiatan Inti

Guru menayangkan permasalahan terkait dengan median melalui *Power Point Texs* (PPT)

± 90 menit

Tentukanlah median dariberatbuah-buahan di atas.

- 2. Peserta didik mencermati permasalahan yang berkaitan dengan median yang di tayangkan guru melalui *power point*. (Mengamati)
- 3. Peserta didik diminta untuk mengajukan pertanyaan berdasarkan pengamatan yang dilakukan. (Menanya)
- 4. Apabila proses bertanya dari peserta didik kurang lancar, guru melontarkan pertanyaan penuntun/pancingan secara bertahap.

Contoh pertanyaan:

- Apa yang terlintas di pikiran kalian setelah melihat gambar dan masalah yang ditampilkan?
- Bagaimana cara menentukan median dari berat buah-buahan tersebut?
- 5. Peserta didik dibagi menjadi beberapa kelompok terdiri dari 4 atau 5 orang.
- 6. Peserta didik bergabung dengan kelompok yang telah dibagikan
- 7. Guru memberikan permasalahan terkait dengan median melalui pemberian LKPD.(*terlampir*)
- Peserta didik dibimbing dan diarahkan untuk mendefinisikan masalah terkait median dan modus.
- 9. Peserta didik mencari informasi dengan berbagai cara melalui diskusi kelompok (Menalar)

Fase 2: Mengorganisa sikanSiswaBel ajar.

Fase 3: Membimbingp enyelidikanind ividudankelom pok.

- 10. Peserta didik diminta untuk melaksanakan eksperimen untuk mendapatkan penjelasan dan pemecahan masalah
- 11. Peserta didik secara berkelompok melaksanakan eksperimen untuk mendapatkan penjelasan dan pemecahan masalah terkait dengan median. (Mencoba)
- 12. Peserta didik menyusun solusi atau jawaban dari permasalahan yang diberikan.
- 13. Peserta didik dibimbing dan diarahkan dlam kegiatan yang sedang dilakukan.
- 14. Peserta didik diinformasikan bahwa waktu untuk menyelesaikan LKPD telah selesai
- 15. Peserta didik menyiapkan hasi diskusi dan mamajangkan hasil kerja LKPD kelompoknya pada tempat yang berbeda.

(Mengkomunikasikan)

- 16. Tiap kelompok berkunjung kekelompok lainnya, sedangkan satu orang tiap kelompok melayani pengunjung untuk berdiskusi tentang hasil kerja kelomponya (dapat menerima masukkan dari pengunjung). Peserta didik didorong agar mengunjungi kelompok lainnya.
- 17. Peserta didik secara individu dipersilakan untuk bertanya dan menanggapi kembali tentang hasil kerja kelompok lain.
- Peserta didik diberikan penguatan terhadap hasil kerjanya.

Fase 4: Mengembangk andanmenyaji kanhasilkarya.

Fase 5: Menganalisisd anmengevalua si proses pemecahanma salah.

19.	Siswa diminta duduk kembali ke tempat masing-	
	masing.	
Pe	enutup	± 15
1.	Peserta didik bersama guru menyimpulkan hasil	menit
	belajar tentang median.	
2.	Apabila kesimpulan yang disampaikan peserta	
	didik belum tepat atau masih ada yang kurang,	
	guru memberikan penguatan.	
3.	Menanyakan kepada peserta didik hal yang belum	
	di pahami terkait dengan median.	
4.	Peserta didik diingatkan untuk mengulang	
	pelajaran dirumah	
5.	Guru menyampaikan materi yang akan dipelajari	
	pada pertemuan yang akan datang yaitu	
	menentukan Modus dari suatu data.	
6.	Guru menutup pelajaran dengan mengucapkan	
	salam.	

• PertemuanKetiga

Fase/Sintaks	KegiatanBelajar		
	Kegiatan Pendahuluan	± 10	
	Guru mengucapkansalam.	menit	
	2. Guru menanyakankabar dan		
	memintasalahseorangpesertadidikuntukmemimpin		
	doa, kemudian		
	gurumengecekkehadiranpesertadidik.		
	3. Memintapeserta didik menyimpan benda-benda		
	yang tidak berhubungan dengan pelajaran dan		

menyiapkan buku panduan, alat tulis serta benda lainnya yang berhubungan dengan pelajaran.

Apersepsi:

4. Dengan tanya jawab, guru mengecek pemahaman peserta didik tentang materi prasyarat yang berkaitan dengan materi modus.

Contoh Pertanyaan:

- 1) Urutkan data berikut! misalnya suatu kelas di dalamnya terdapat 5 orang siswa yang berat badannya berbeda-beda, si J berat badannya 45 kg, si N berat badannya 48kg, si H berat badannya 43 kg, si Mberat badannya45 kg dan si L berat badannya 40.
- 2) Tentukan medianberat badan siswa di atas.

Motivasi:

5. Memotivasi peserta didik dengan menyampaikan tujuan dan manfaat mempelajari modus dalam kehidupan sehari-hari, misalnya jumlah penduduk, nilai raport, ukuran sepatu dan lain-lain.

Data di atasmenunnjukkanjenis film yang disukaisiswa

	di kelas VIII. Tentukan modus dari data yang	
diberikan.		
	6. Guru menyampaikan tujuan pembelajaran, peserta	
	didik diharapkan dapat menentukan nilai modus	
	dari suatu data yang diberikan.	
	7. Guru menyampaikan bahwa pembelajaran hari ini	
	akan dilaksanakan dengan model Problem Based	
	Learning (PBL) serta menjelaskan kepada siswa	
	setiap langkah-langkah pembelajaran	
	menggunakan Problem Based Learning (PBL).	
	Kegiatan Inti	± 60
	1. Guru menayangkan permasalahan terkait dengan	menit
	modus melalui Power Point Texs (PPT).	
	Permasalahan:	
	Tim dokter di SMP Negeri 1 Darussalam	
	melakukan pemeriksaan berat pada hari gizi nasional, dari data frekuensi kumulatif dengan	
	interval kelas 5 diketahui modusnya berada pada	
Fase 1:	rentangan 51-60, jika selisih antara frekuensi kelas	
OrientasiSisw apadaMasalah	modus dengan kelas sebelumnya sama dengan 8	
	dan selisih antara frekuensi kelas modus dengan kelas sesudahnya sama dengan 4, maka modus	
	dari data tersebut adalah	
	2. Peserta didik mencermati permasalahan yang	
	berkaitan dengan median yang di tayangkan guru	
	melalui power point. (Mengamati)	
		í
	3. Peserta didik diminta untuk mengajukan	
	3. Peserta didik diminta untuk mengajukan pertanyaan berdasarkan pengamatan yang	

4. Apabila proses bertanya dari peserta didik kurang lancar, guru melontarkan pertanyaan penuntun/pancingan secara bertahap.

Contoh pertanyaan:

- Apa yang terlintas di pikiran kalian setelah melihat gambar dan masalah yang ditampilkan?
- Bagaimana cara menentukan modustabel tersebut?
- 5. Peserta didik dibagi menjadi beberapa kelompok terdiri dari 4 atau 5 orang.
- 6. Peserta didik bergabung dengan kelompok yang telah dibagikan
- 7. Guru memberikan permasalahan terkait dengan median melalui pemberian LKPD.(*terlampir*)
- 8. Peserta didik dibimbing dan diarahkan untuk mendefinisikan masalah terkait median dan modus.
- 9. Peserta didik mencari informasi dengan berbagai cara melalui diskusi kelompok (Menalar)
- Peserta didik didorong untuk melaksanakan eksperimen untuk mendapatkan penjelasan dan pemecahan masalah
- 11. Peserta didik secara berkelompok melaksanakan eksperimen untuk mendapatkan penjelasan dan pemecahan masalah terkait dengan median. (Mencoba)
- 12. Peserta didik menyusun solusi atau jawaban dari

Fase 2: Mengorganisa sikanSiswaBel ajar.

Fase 3: Membimbingp enyelidikanind ividudankelom pok.

		permasalahan yang diberikan.	
	13.	Peserta didik dibimbing dan diarahkan dlam	
		kegiatan yang sedang dilakukan.	
	14.	Peserta didik diinformasikan bahwa waktu untuk	
		menyelesaikan LKPD telah selesai	
Fase 4: Mengembangk	15.	Peserta didik menyiapkan hasi diskusi dan	
andanmenyaji		mamajangkan hasil kerja LKPD kelompoknya	
kanhasilkarya.		pada tempat yang berbeda.	
		(Mengkomunikasikan)	
	16.	Tiap kelompok berkunjung kekelompok lainnya,	
		sedangkan satu orang tiap kelompok melayani	
		pengunjung untuk berdiskusi tentang hasil kerja	
Fase 5: Menganalisisd		kelomponya (dapat menerima masukkan dari	
anmengevalua		pengunjung). Peserta didik didorong agar	
si proses pemecahanma		mengunjungi kelompok lainnya.	
salah.	17.	Peserta didik secara individu dipersilakan untuk	
		bertanya dan menanggapi kembali tentang hasil	
		kerja kelompok lain.	
	18.	Peserta didik diberikan penguatan terhadap hasil	
		kerjanya.	
	19.	Siswa diminta duduk kembali ke tempat masing-	
		masing.	
	Pe	enutup	± 10
		Peserta didik bersama guru menyimpulkan hasil	menit
		belajar tentang modus.	
	2.	Apabila kesimpulan yang disampaikan peserta	
		didik belum tepat atau masih ada yang kurang,	
		guru memberikan penguatan.	

- 3. Menanyakan kepada peserta didik hal yang belum di pahami terkait dengan median.
- 4. Peserta didik diingatkan untuk mengulang pelajaran dirumah
- 5. Guru menyampaikan materi yang akan dipelajari pada pertemuan yang akan datang yaitu penyebaran data.
- 6. Guru menutup pelajaran dengan mengucapkan salam.

H. Penilaian

- 1. Tugas kelompok (LKPD)
- 2. Tugas individu
- 3. Bentuk Instrumen
 - a. Soal pretest
 - b. Soal postest

Banda Aceh, 16 April 2018

(Vina Yulianda) NIM: 261324676

RATA-RATA, MEDIAN, DAN MODUS

1. Pengertian Statistika

Statistikaadalahilmu (metodeilmiah) yang mempelajaricaracaramengumpulkan, menyusun, menyajikandanmenganalisis data sertamengambilkesimpulan yang logissehinggadapatdiambilkeputusan yang akurat.

2. Mengelolah data

Pada bagian pengelolahan data dikenalkan cara mengelolah data yaitu dengan menghitung mean, modus dan median. Mean merupakan nilai rata-rata yang diperoleh dengan menjumlahkan semua bagian data dengan banyak data, modus merupakan data yang sering muncul dan median nilai tengah setelah data diurutkan.

a. Rata-rata (mean)

Rata-rata dihitung dengan cara membagi jumlah nilai data dengan banyaknya data rata-rata hitung bisa juga disebut rataan atau rata-rata atau mean.

• Menghitung rata-rata dari data tunggal

misalnya $x_1,x_2,x_3,x_4,x_6,\dots, x_n$ adalah suatu data. Rata-rata (mean data tersebut disimbolkan \bar{x} .

$$\overline{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_6 + \dots + x_n}{n}$$
, dengan n adalah banyaknya data, n $\neq 0$

Contoh:

Berapakah rata-rata hasil panen Apel pada gambar di bawah ini?

PAERAH		HASIL PANEN
PAEKAH		APEL (Kg)
А	00000000	85
В	00000	50
С	0000000	70
D	@@@@@	55
Keterai	ngan:	

Jawab.

a. MemahamiMasalah

Dik:

$$x_1=85$$
 $x_2=50$ $x_3=70$

Dit: Berapakah nilai rata-rata dari hasil panen Apel tersebut?

b. MerencanakanPenyelesaian

$$\overline{\chi} = \frac{x_1 + x_2 + x_3 + x_4}{n}$$
, dengan n = 4

c. MelaksanakanRencana

$$\bar{x} = \frac{85 + 50 + 70 + 55}{4}$$

$$\bar{x} = \frac{260}{4}$$

$$\bar{x} = 65$$

d. MemeriksaKembaliHasil yang Telah Diperoleh

$$65 = \frac{85 + x_2 + 70 + 55}{4}$$
$$65 = \frac{210 + x_2}{4}$$
$$x_{2} = 260 - 210$$

$$x_2 = 50$$

Jadi, nilai rata-ratanya adalah 65

• Menghitung rata-rata dari sekelompok data

Apabila f_1 adalah banyaknya data bernilai x_1 , f_2 adalah banyaknya data yang bernilai x_2 ,...., fn adalah banyaknya data bernilai x_n , maka rata-rata dari seluruh data adalah:

$$\bar{\chi} = \frac{f_1 \cdot x_1 + f_2 \cdot x_2 + \dots + f_n \cdot x_n}{f_1 + f_2 + \dots + f_n}$$

Contoh:

Nilai rata-rata ujian matematika dari 39 siswa adalah 45. Jika nilai seorang siswa yang mengikuti ujian susulan di tambahkan, nilai rata-rata ujian tersebut menjadi 46. Berapakah nilai siswa yang mengikuti ujian?

Dik:

Rata-rata = 45 dari 45 orang Nilai rata-rata tersebut berubah menjadi Rata-rata=46

Dit: tentukan nilai ulangan Tomi

Rata-rata (*Mean*)=
$$\frac{jumlah \ nilai \ seluruh \ data}{banyak \ data}$$
$$45 = \frac{x_1 + x_2 + x_3 + ..., x_{39}}{39}, \text{ sehingga}$$

Jumlah nilai data, yakni $x_1+x_2+x_3+\dots x_{39}=1.755$. Jika nilai seorang siswa yang mengikuti ujian susulan di rambahkan adalah x_{39} , maka

7,0 =
$$\frac{x_1 + x_2 + x_3 + ..., x_{40}}{40}$$
, sehingga 46 = $\frac{1.755 + x_{39}}{40}$

$$1.840 = 1.755 + x_{39}$$

$$\chi_{39} = 1.840 - 1.755$$

= 85

Periksa kembali jawaban.

Rata-rata (Mean) =
$$\frac{1.755+85}{40}$$

= $\frac{1.840}{40}$
= 46

Jadi, nilai ulangan Matematika Tomi tidak diikursertakan adalah 85

b. Median

Median adalah nilai data yang letaknya atau posisinya berada di tengah-tengah data yang di urutkan dari nilai terkecil sampai terbesar. Disimbolkan dengan Me.

• Menentukan median dari data tunggal

 $\mbox{misalkan} x_1, x_2, x_3, x_4, \dots, \dots x_n \mbox{adalahsuatu} \quad \mbox{data}, \quad \mbox{dengan} x_1 \leq$

$$x_2 \leq x_3 \leq x_4 \leq \ \dots, \dots \leq x_n$$

Jika data ganjil, medianadalahnilai data ke $\frac{n+1}{2}$, yaitu:

$$Me = \frac{x_{n+1}}{2}$$

 \succ Jika n genap, median adalah rata-rata dari data ke $\frac{n}{2}$ dengan data ke

$$\frac{n+1}{2}$$
, sehingga

$$Me = \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right)$$

Contoh:

Misalnya suatu kelas didalamnya terdapat 5 orang siswa yang memakai ukuran sepatu berbeda-beda, si V memakai ukuran sepatu nomor 37, si B memakai ukuran sepatu nomor 38, si H memakai ukuran sepatu nomor 40, si N memakai ukuran sepatu 39 dan si L memakai ukuran sepatu 38. Tentukan rata-rata ukuran sepatu dari kelima siswa tersebut. Jawab.

a. MemahamiMasalah

Dik:

$$x_1 = 37$$

$$x_2 = 38$$

$$x_3 = 40$$

$$x_4 = 39$$

$$x_5 = 38$$

Dit: Carilah median dari data tersebut!

b. MerencanakanPenyelesaian

Data harus diurutkan terlebih dahulu dari yang data terkecil kedata terbesar

Karena jumlah data tersebut ganjil maka menggunakan rumus:

$$Me = \frac{x_{n+1}}{2}$$

c. MelaksanakanRencana

$$Me = \frac{x_{n+1}}{2}$$

$$Me = \frac{x_{5+1}}{2}$$

$$Me = \frac{x_6}{2}$$

$$Me = x_3$$

$$Me = 38$$

d. MemeriksaKembaliHasil yang TelahDiperoleh

Dari nomor sepatu 37, 38, 38, 39, 40 dapat ditentukan nila tengahnya yaitu 38

Jadi, nilai rata-ratanya adalah 38

• Menentukan median dari data kelompok

Dengan rumus: Me = Tb +
$$\left[\frac{\frac{n}{2}-F}{f_e}\right]$$
. p

Dengan:

Me = median

Tb = tepi bawah kelas

F = frekuensi kumulatif (jumlah frekuensi) seelum kelas

median

 f_e = banyak data P = panjang kelas

Tentukan Median dari data berikut!

Nilai Ujian	Frekuensi
60 – 64	2
65 – 69	7
70 – 74	10
75 – 79	8
80 – 84	3

Jawab.

Dik : Tb = 70 - 0.5

Dit: tentukan median

$$Me = Tb + \left[\frac{\frac{n}{2} - F}{f}\right] \cdot p$$

Me = 69,5 +
$$\left[\frac{\frac{30}{2}-9}{10}\right]$$
.5

$$Me = 69,5 + \left[\frac{15-9}{10}\right].5$$

Me =
$$69.5 + \left[\frac{6}{10}\right].5$$

$$Me = 69,5 + \frac{30}{10}$$

$$Me = 69,5+3$$

$$Me = 72,5$$

Jadi, median dari data tersebut adalah 72,5

c. Modus

Modus dari suatu data adalah nilai yang paling banyak muncul atau frekuensi tertinggi. Modus didefinisikan misalkan $x_1, x_2, x_3, \ldots, x_n$ adalah suatu data, data yang paling sering muncul disebut modus, yang disimbolkan dengan Mo.

• Menentukan modus dari data tunggal

Untuk menentukan modus dari data tunggal kita cukup mengurutkan data tersebut, kemudian mencari nilai data yang frekuensinya paling besar.

Contoh:

Tentukanlah modus dari data berikut

Jawab.

Modus dari data berikut 2,3,4,2,4,5,4,2,2 adalah 2 sebab angka 2 lebih banyak muncul sebanyak 4 kali.

• Menentukan modus dari dta kelompok

Dengan rumus: Mo = Tb +
$$\left[\frac{b_1}{b_1+b_2}\right]$$
. p

Dengan:

Me = modus

Tb = tepi bawah kelas modus

 b_1 = selisih frekuensi kelas modus dengan kelas sebalumnya b_2 = selisih frekuensi kelas modus dengan kelas sebalumnya

P = panjang kelas modus

Contoh:

Tentukan modus dari data berikut....!

Nilai Ujian	Frekuensi
11 – 15	4
16 – 20	16
21 – 25	12
26 – 30	8

Jawab.

Dik: Tb =
$$16 - 0.5$$

= 15.5
 b_1 = $16 - 4$
= 12

$$b_2 = 16 - 12$$

= 6
P = 5

Dit: tentukan modus

$$Mo = 15.5 + \left[\frac{b_1}{b_1 + b_2}\right] \cdot p$$

$$Mo = 15,5 + \left[\frac{12}{12+4}\right].5$$

$$M_0 = 15,5 + \left[\frac{12}{16}\right].5$$

$$Mo = 15,5 + \frac{60}{16}$$

$$Mo = 15,5 + 3,75$$

$$Mo = 19,25$$

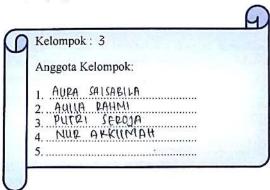
Jadi, modus dari data tersebut adalah 19,25

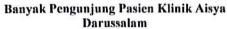
LEMBAR KERJA PESERTA DIDIK (LKPD-1)

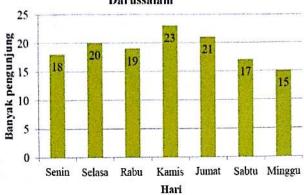
Mata Pelajaran : Matematika

Kelas : VIII

Pokok Materi : Statistika


Waktu : 30 menit




- 1. Bacalah basmallah!
- 2. Bacalah petunjuk sebelum melakukan kegiatan.
- 3. Tulis nama anggota kelompok kalian di tempat yang telah disediakan.
- 4. Teliti dalam mengerjakan LKPD 1
- 5. Berikan kesimpulan dari kegiatan yang kamu lakukan.

Tujuan Pembelajaran:

Menentukan nilai rata-rata dari data yang diberikan

Berapakah rata-rata banyak pasien yang berobat di Klinik Aisya Darussalam dalam waktu satu minggu?

Penyelesaian:

a. Memahami Ma	asa	lah
----------------	-----	-----

(Tuliskan apa yang diketahui dan	itanya dari soal di atas dengan kata-katamu
sendiri)	
Dilestatesis	

Diketanui:				
Senin ≥18	Selata = 20	Rabu = 19	kam15 = 23	Jumat = 21
Sabtu = 17	Mingga = 15			
••••				
D:4 PO+0:	rata banual	e basien ya	ng berobat satu minggi	diklinik
Ditanya	urcalaba dal	um Waktu	LUTIN WILLIAM	. 7
1413AM 1701	WINCKINN COM	V(11)	10.60. 11(11.10)	····

b. Merencanakan Pemecahan Masalah

(Gunakan variabel untuk hal-hal yang di ketahui dan ditanya, kemudian buatlah kaitan antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur penyelesaian masalah)

그는 사람들이 얼마 가는 때문에 되었다면 하는데 되었다. 그 사람들은 사람들은 사람들이 되었다면 그 없는데 나를 보고 있다.	
X' = 18	
X2 = 20	
X3 = 19	
X4 = 23	
X5 = 21	
X6 = 17	
x 7 - 15	

c. Melaksanakan Pemecahan Masalah	
(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatk penyelesaian!)	
$\overline{X} = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$	
N	
x = 18+20+19+23+21+17+1c	
7	
.X ≥ <u>133</u>	
7	
₹ = 19	
<u> </u>	
d. Memeriksa Kembali & Menarik Kesimpilan	
(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperole benar!)	?h
Nilai pata rata samua pengunjung rumah sakit kli Aisya adalah 19	nik
Jadi,	••••
Masalah 2	
Empat kelompok siswa yang masing-masing terdiri atas 4,8,18,20 orang sis	wa
mengumpulkan dana sumbangan untuk korban bencana alam. Setiap siswa pa	
kelompok pertama menyumbang Rp. 5.000,00, kelompok kedua Rp. 3.000,	
kelompok ketiga Rp. 4.000,00, dan kelompok keempat 2.000,00. Berapa rata-r	
sumbangan setiap siswa dari keempat kelompok tersebut?	
sumbangan setiap siswa dari keempat kelompok tersebat:	
Penyelesaian:	
a Memahami Masalah	
(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu	
sendiri)	
Diketahui:	
4 = 5000	
8 = 3000	
18 - 4 000	
10 - 2000	2300760

	4
	Ditanya:
b.	Merencanakan Pemecahan Masalah
	(Gunakan variabel untuk hai-hai yang di ketahui dan ditanya, kemudian buatlah
	kaitan antara informasi yang diketahui dengan yang di tanya, dan tentukan
	prosedur penyelesaian masalah)
	51 = 7
	52 = 18 X3 + 4000
	54 2000 X4 = 2000
	·····
c.	Melaksanakan Pemecahan Masalah
	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan
	penyelesaian!)
	$\overline{x} = f_1 \cdot x_1 + f_2 \cdot x_2 + f_3 \cdot x_3 + f_4 \cdot x_4$
	51+52+54 × , (9×5000)+(8×3000)+(18×4000)+(20×2000)
	× , (4×5000) + (8 × 3000) + (18 × 4000) + (10 × 2000)
	¥ 4+8+18+20
	x , 10.000 + 29.000 + 72.000 + 90.000 x : 156.000 = 39
	448468420
d.	Memeriksa Kembali & Menarik Kesimpilan
	(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh
	benar!)
	sala sala Cilmbanagu cetiOP ciama Mari boempat
	Jadi, rafa-rator sumbangan setiap siowa Dari keempat kelompok tersebut adalah = 39
	belompok terrebut adalah = 35
	The figure of the first term of the figure o

Masalah 3

4		Kriteria		H	ai Hasil	Bolajar	
**	Kompanen	Ketustanan Minimat	Pany	jelahuan		raktik	Sikap
		(KKM)	Angka	Horof	Angka	Horuf	Predika
	Mata Pelajaran		15.93				
-	Pentickas Aguna	70	80	BOLOTH MAL	80		A
*	Pentition Knoppingskins	70	60	Ottopulated			1
3	Estata Informació	70	77	194 4	76	port sum	8
	Balana hypys	70	72	figm he	70	sign deligat	B
1	Materialka	70	72	Dista Are			8
	Fall	70	70	Tojah Polota			6
1	King	70	10	pelop for	. 80	Plly- Poble	4
A	Being	70	73	mon high		tryth from	1
4	Sajash	70	80	Delayar full	A M	1385 E	A

Dari data di samping, hitunglah rata-rata nilai raport Winda?

Per	nyelesaian:
a.	Memahami Masalah
	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu
	sendiri)
	Diketahui:
	agama = 80 Biologi > 73
	Pkn = 80 (egavah = 80
	B. Indonesia : 77
	B. inggris = 72
	makmalika = 72
	5isika = 70
	kimia = 80
	Ditanya: hitunglah rata-rata nilai rapot winda?
b.	Merencanakan Pemecahan Masalah
	(Gunakan variabel untuk hal-hal yang di ketahui dan ditanya, kemudian buatlah
	kaitan antara informasi yang diketahui dengan yang di tanya, dan tentukan
	prosedur penyelesaian masalah)
	X1 = 20
	X2 = 86
	3.72

	X4 > 72
	V - 00
	×5 = 72 ×5 = 90
	V ₆ → 70
	X* > 80
	X8 = 73
c.	Melaksanakan Pemecahan Masalah
	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan
	penyelesaian!)
- 1	penyelesalan!)
	5 IV IV EV IV.IV IV + V. + V.
	X: X1+X2+X3+X4+X5+X6+X7+X9+X9
	η
	0. 0. 1701 901 27190
	7 X = 80+80+77+72+72+70+80+73+80
	9
	5 704
	x = 684
	× - 76
	X = +6
d	Memeriksa Kembali & Menarik Kesimpilan
u.	Memorina Acideman de de la
	(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh
	benar!)
	ocial.)
	7
	Jadi, hitunglah rata-rata nilai raport winda adalah: 76
	Jadi,

LEMBAR KERJA PESERTA DIDIK

(LKPD-2)

Mata Pelajaran

: Matematika

Kelas

: VIII

Pokok Materi

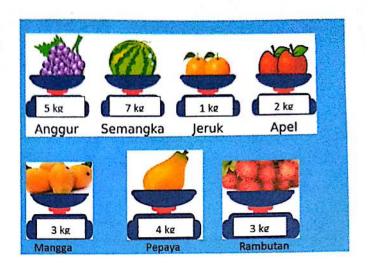
: Statistika

Waktu

: 30 menit

- 1. Bacalah basmallah!
- 2. Bacalah petunjuk sebelum melakukan kegiatan.
- 3. Tulis nama anggota kelompok kalian di tempat yang telah disediakan.
- Teliti dalam mengerjakan LKPD 2
- 5. Berikan kesimpulan dari kegiatan yang kamu lakukan.

Tujuan Pembelajaran:

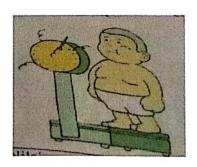

Menentukan median dari data yang diberikan.

Kelompok: 1

Anggota Kelompok:

- 1. Raja fakhtu
- 2. Holil Azicia
- 3. M. ARDIANISYAH
- 4. Misbathy Musir
- 5. QaMADHan

Tentukanlah median dari berat buah-buahan di samping.


Penyelesaian:

1 0	nyclesalan.				
a.	Memahami Masalah				
	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri)				
	Diketahui: ANGGOT = 5.KG MIANS 9.0. = 316.6				
	Semangea = 2kG Pepaga = 4/66				
	Jewk = 1166 Rambut 90 = 3166				
	AREL = 2166				
	Ditanya : MEdian deri barat buak fer Sabut				
	*				
b.	Merencanakan Pemecahan Masalah				
	(Gunakan variabel untuk hal-hal yang di ketahui dan ditanya, kemudian buatlah kaitan				
	antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur				
	penyelesaian masalah)				
	penyeresulan masarany				
	X, =5/c6 /5=3/c6				
	X2 = 7/56 X6 = 4/56 N = 2				
	$X_{3} = 1/66$ $X_{3} = 3/66$				

c. Melaksanakan Pemecahan Masalah

	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan penyelesaian!)
	Jika divretikan 1.2.3.41.4.5.2
	Me- 1 7
	- × 8
	= 3
d.	Memeriksa Kembali & Menarik Kesimpilan
	(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!)
	Jadi, Madioh dasi basat brok 2 has adorah 3 56

Masalah 2 BPOM melakukan sosialisasi ke sekolah SMP Negeri 1 Darussalam . Berikut merupakan data berat badan siswa kelas VIII IPA

Nilai	Frekuensi
51 – 60	5
61 – 70	10

71 - 80	k
81 - 90	8
91 - 100	12

Jika median data di atas adalah 87 maka nilai k adalah?

	Penyelesaian:
a.	Memahami Masalah
	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri)
	Diketahui: $h = 5 + 10 + 1c + 8 + 12 = 3c + 1/2$
	Th - 21 - 015 = 205
	t = 5+10 = 15
	f, 7.1c
	1 - 10
	Ditanya: Nilo1. 14.2
	(Gunakan variabel untuk hai-hai yang di ketahui dan ditanya, kemudian buatlah kaitan antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur penyelesaian masalah)
c.	Melaksanakan Pemecahan Masalah
	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan
	penyelesaian!) $\left(\frac{h}{2} - F\right) - p$ $mn = 7.5 + \left(\frac{h}{12} + \frac{h}{12}\right) + p$
	$m\rho = 75 + \sqrt{3}\xi + \kappa - \sqrt{5}$
	2l = 2015 4 2 B 1-10
	$m_0 = 75 + \left(\frac{35 + K}{2} - \frac{15}{14}\right) - 10$
	78=70,5 t 35 +1x -30 .10

2,5 = 2r + r/s // // // // // // // // // // // // /
Memeriksa Kembali & Menarik Kesimpilan
(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang dipero benar!)

Tentukan median dari harga sepatu-sepatu di atas.

Penyelesaian:

a.	Memahami Masalah
	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri)
	Diketahui: Harea Sepatu = RD 700 D00,00 = RD 650,000,00 = RD 700,000,00 = RD 700,000,00
	TRP POUT OF THE TOTAL OF THE TO
	= 200,000,000,000
	-R15-310::000;00
	Ditanya: Madian dari harga Stratu
b.	Merencanakan Pemecahan Masalah
	(Gunakan variabel untuk hai-hai yang di ketahui dan ditanya, kemudian buatlah kaitan
	antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur
	penyelesaian masalah)
	Misalkan:
	200.000, 2000.000, 316.000, 370.000, 450,000, 480.000, 650,000
	. 1.2.20.,000
c.	Melaksanakan Pemecahan Masalah
355	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan
	penyelesaian!)
	$1/(x_0, x_0, x_1)$
	$\frac{1}{Me} = \frac{1}{2} \left(\frac{x_1}{2} + \frac{x_2}{2} + 1 \right) = \frac{820.000}{2}$ $= \frac{1}{2} \left(\frac{x_1}{2} + \frac{x_2}{2} + 1 \right) = \frac{410.000}{2}$
	2
	= 7 (x + 2 +1) = 410,000
	11 442
	= \frac{1}{2} \left(\times_4 + \times_5 \right)
	= 1 (390.000+450.000)
	= 2 (370,000 + 450,000)
a	Memeriksa Kembali & Menarik Kesimpilan
u.	Memeriksa Kemban & Memarik Kesimpilan
	(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!)
	Jadi, madion ma adolak 4/0,000

LEMBAR KERJA PESERTA DIDIK (LKPD-3)

Mata Pelajaran : Matematika

Kelas : VIII

Pokok Materi : Statistika

Waktu : 30 menit

- Bacalah basmallah!
- 2. Bacalah petunjuk sebelum melakukan kegiatan.
- Tulis nama anggota kelompok kalian di tempat yang telah disediakan.
- Teliti dalam mengerjakan LKPD 2
- 5. Berikan kesimpulan dari kegiatan yang kamu lakukan.

Tujuan Pembelajaran:

Menentukan modus dari data yang diberikan.

yang diberikan.

Kelompok: 3

Anggota Kelompok:

1. Mauliana
2. hur ak filihah
3. Aulia rahani
4. Aura Salsabila
5.

Masalah 1 (modus)

Tentukan modus dari data di samping.

Nilai Uj	an Frekuensi
31 - 40	1
41 - 50	2
51 - 60	5
61 - 70	15
71 - 80	25
81 - 90	20
90 -100	12

Per	nyelesaian:
a.	
	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri)
	Diketahui: a. frequens, belac midean = 25
	Banyaknya bata = 80
	panjang kelar Interval = 10
	b. fretuensé kelac moduc = 25
	Leiat Sele lumoya = Is
	Ditanya: kelac Sesu dalinya = 20
	Banyaknya Data 280
	one tentucan madian dan modur dari
	data torsebut
	Merencanakan Pemecahan Masalah
b.	(Gunakan variabel untuk hal-hal yang di ketahui dan ditanya, kemudian buatlah kaitan
	antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur
	penyelesaian masalah)
	Tb=71-05 Tb=70.5
	P = 70
	f = 25 f = 1+2+5+10 = 23

c.	Melaksanakan Pemecahan Masalah
	(Jalankan prosedur yang dibuat pada langkah sebelumnya untuk mendapatkan
	penyelesaian!)
	penyeresulant)
	$m_{e} = 7b + \left(\frac{n}{2} - \frac{f}{5}\right) \cdot p$ $m_{e} = 70.5 + \left(\frac{20}{2} - 23\right) \cdot 16$
	$m_{e} = 70.5 + \left(\frac{30}{2} - \frac{23}{3} \right) = 16$
	2.5
	$m_1 = 10.5 + \left[\frac{25}{46 - 23}\right] \cdot 16$
	25
	by 37018 +[17 2.16
	$m_3 = 7.0.5$ $m_4 = 7.0.5$ $+ \left[\frac{17}{2g}\right] \cdot 1.6$
	me = 7018 + 6.8

mo = 70 g + \(\frac{10}{10+5} \) 16 \[\text{Memeriksa Kembali & Menarik Kesimpilan} \) \[\text{(Analisis dan evaluasi apakah prosectur yang diterapkan dan hasil yang diperoleh benar!)} \\ \text{Memeriksa Kembali & Menarik Kesimpilan} \) \[\text{(Analisis dan evaluasi apakah prosectur yang diterapkan dan hasil yang diperoleh benar!)} \\ \text{Mon = 77.16} = \text{Th} + \text{D} \\ \text{D}	61 Ho2 5
Memeriksa Kembali & Menarik Kesimpilan (Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!) \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Masalah 2} \] Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus dengan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: \[\text{Memahami Masalah} \) \[\text{Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri \) \[\text{Diketahui} \) \[\text{Diketahui} \) \[Dila Undarva (a) \text{Color To	mo = 70.5 + (10) (16
Memeriksa Kembali & Menarik Kesimpilan (Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!) \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Color To be below to be benare} \] \[\text{Masalah 2} \] Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus dengan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: \[\text{Memahami Masalah} \) \[\text{Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri \) \[\text{Diketahui} \) \[\text{Diketahui} \) \[Dila Undarva (a) \text{Color To	mo: 70,5 + (10),10 mo: 70,5 + 6,66
Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!) MO Th	***************************************
Jadi, Jadi, nikai modur dari data tersebul adalah Masalah 2 Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Diketahui: Diketahui: Diketahui: Diketahui: Diketahui: Diketahui: Diketahui: Diketahui: Ditanya: Ditanya:	(Analisis dan evaluasi apakah prosedur yang diterapkan dan hasil yang diperoleh benar!) MO = Tb + b1
Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Ditanya: Ditanya:	77.16 = 76 f 10 3.16 Tb = 70.5 18
Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Ditanya: Ditanya:	Jadi, Jadi nilai modur dari data tersebul adalah
Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Ditanya: Ditanya:	Macalale O
nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah Penyelesaian: Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Diketahui:	Masalan 2
Memahami Masalah (Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Dibo Tapi babbani (180) = Cot Silitus filmiumania = 8 Lecar sesuclahina a Vantang Itilas (ntarvalis pet tentulan nilai = modus dari data tersentis) = 3 3 3 3	nasional, dari data frekensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sam dengan 8 dan selisih antara frekuensi kelas modus denan kelas sesudahnya sama
(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri) Diketahui: Di	Penyelesaian:
Diketahui: 1000 tapi bawani lalo tost Silatus filmlumania 5 8 Lecas filmlumania 5 8 Lecas filmlumania 6 Patlana (trior (ntrival) 5 Dit fentalian nulai 2 modus dari data terschute) 23.23	Memahami Masalah
Ditanya:	(Tuliskan apa yang diketahui dan ditanya dari soal di atas dengan kata-katamu sendiri)
Ditanya:	Diketahui: DOD Tapi bawans (ela) = Cozs
Ditanya:	5 Citas filodiamenta 5 B
Ditanya:	GECAL SISUALING A
Ditanya:	bit tenturan milai is modus mus data
Ditanya:	TELXINAS).
Ditanya:	E'. 5 = 70°

antara informasi yang diketahui dengan yang di tanya, dan tentukan prosedur

penyelesaian masalah)

11

BUTIR SOAL PRE TEST

(Tes Awal)

Sekolah :SMP Negeri 1 Darussalam

Mata Pelajaran : Matematika

Kelas/Semester :VIII/II
Materi Pokok :Statistika
Tahun Ajaran: 2017/2018

Petunjuk

1. Bacalah dengan teliti permasalahan yang diberikan.

2. Jawablah permasalahan di Lembar Jawaban yang telah disediakan.

3. Jika terdapat kesalahan tidak perlu dihapus dan perbaiki di lembar jawaban yang disediakan

Indikator

- :- diberikan suatu data, siswa dapat menentukan rata-rata suatu data
 - diberikan suatu data, siswa dapat menentukan median suatu data
 - dibrerikan suatu data, siswa dapat menentukan modus suatu data
- 1. Tentukan rata-rata dari soal-soal berikut ini:
 - a. Misalnya suatu kelas di dalamnya terdapat 7 orang siswa yang berat badannya berbeda-beda, Ari berat badan 37kg, Rikaberat badannya 40kg, Haikalberat badannya42kg, Naniberat badannya 39kg, Lisa sama berat badannya dengan Ari, Nora berat badannya 45kg dan Riski sama berat badannya dengan Haikal. Tentukan rata-rata berat badan seluruh siswa di kelas.
 - b. limakelompoksiswa yang masing-masing terdiri atas 2,4,6,8 orang siswa mengumpulkan dana sumbangan untuk korban bencana alam. Setiap siswa pada kelompok pertama menyumbang Rp. 5.000,00, kelompok kedua Rp. 3.000,00, kelompok ketiga Rp. 4.000,00, dan kelompok keempat 2.000,00. Berapa rata-rata sumbangan setiap siswa darikeempatkelompoktersebut?
- 2. Tentukan median dan modus dari data di samping.

Nilai Ujian Frekuensi	
31 - 40	1
41 - 50	2
51 - 60	5
61 - 70	15
71 - 80	25
81 - 90	20
90 -100	12

Kunci Jawaban Pree-test

No.	KunciJawaban	Skor
1.	A. Memahami Masalah a. Dik: Ari = 37kg	4
	Rika = 40 Haikal = 42 Nani = 39 Lisa sama dengan Ari Nora = 45 Riski sama dengan Ari Dit: Tentukan rata-rata berat badan seluruh siswa tersebut.	
	b. Dik: $x_1 = 5.000$ $f_1 = 2$ $x_2 = 3.000$ $f_2 = 4$ $x_3 = 4.000$ $f_3 = 6$ $x_4 = 2.000$ $f_4 = 8$ Dit: berapakah rata-rata sumbangan setiap siswa dari keempat kelompok tersebut?	4

	B. Mere	ncanakan	Penye	lesaian
--	---------	----------	-------	---------

a.
$$x_1 = 37$$

 $x_2 = 40$
 $x_3 = 42$
 $x_4 = 39$
 $x_5 = 37$
 $x_6 = 45$
 $x_7 = 40$

$$\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7}{n}$$

b.
$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + f_4 x_4}{f_1 + f_2 + f_3 + f_4}$$

a. Melaksanakan Rencana

b.
$$\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7}{n}$$

$$\bar{x} = \frac{37 + 40 + 42 + 39 + 37 + 45 + 40}{7}$$

$$\bar{x} = \frac{280}{7}$$

$$= 40$$

c.
$$\bar{\chi} = \frac{(2.5000) + (4.3000) + (6.4000) + (8.2000)}{2+4+6+8}$$

 $\bar{\chi} = \frac{(10000) + (12000) + (24000) + (16000)}{20}$

	$\bar{\chi} = \frac{62,000}{1.000}$	
	20	
	\bar{x} =3.100	
		4
	C. Memeriksa Kembali Hasil yang Telah Diperoleh	4
	a. $\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7}{n}$	
	a. $\bar{x} = \frac{x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7}{n}$ $40 = \frac{37 + x_2 + 42 + 39 + 37 + 45 + 40}{7}$	
	7	
	$280 = 240 + x_2$	
	$x_2 = 40$	
	Jadi, nilai rata-rata berat badan seluruh siswa adalah 40 kg	
	1. I'l. 2 100 - 20 - 62 000	
	b. Jika $3.100 \times 20 = 62.000$	
	Jadi, rata-rata sumbangan setiap siswa dari keempat kelompok tersebut adalah 3.100	4
2.	Judi, fata fata samoungan setiap siswa dari keempat kelompok tersebut adalah 3.100	
12.	A. Memahami Masalah	
	Dik:	4
	a. Frekuensi kelas median =25	
	Banyaknya Data =80	
	Panjang kelas interval = 10	
	b. Frekuensi kelas modus =25	
	Kelas sebelumnya = 15	
	Kelas sesudahnya = 20	4
	Banyaknya Data =80	
	Dit: tentukan median dan modus dari data tersebut?	
	B. Merencanakan Penyelesaian	
<u> </u>		

a. $Tb = 71-0.5$	
= 70,5	4
P = 10	
f = 25	
F = 1 + 2 + 5 + 15	
= 23	4
b. $Tb = 70.5$	
$b_1 = 25 - 15 = 10$	
$b_2 = 25-20 = 5$	
p = 10	
C. Melaksanakan Rencana	
a. $Me = Tb + \left[\frac{\frac{n}{2} - F}{fe}\right] \cdot p$	4
$Me = 70.5 + \left[\frac{\frac{80}{2} - 23}{25} \right] \cdot 10$	
$Me = 70.5 + \left[\frac{40-23}{25}\right].10$	
Me = $70.5 + \left[\frac{17}{25}\right].10$	
Me = 70.5 + 6.8	
Me = 77.3	
b. $Mo = Tb + \left[\frac{b_1}{b_1 + b_2}\right] \cdot p$	4
$M_0 = 70.5 + \left[\frac{10}{10+5}\right].10$	
$Mo = 70.5 + \left[\frac{10}{15}\right]. 10$	
Mo = 70,5 + 6.66	

. Memeriksa Kembali Hasil yang Telah Diperoleh	
Tremeriksu Itembuh Itush yang Telah Diperoten	
a. $Me = Tb + \left[\frac{\frac{n}{2} - F}{f_e}\right]$. p	
$77.3 = \text{Tb} + \left[\frac{\frac{80}{2} - 23}{25}\right] \cdot 10$	
$77.3 = \text{Tb} + \left[\frac{40-23}{25}\right].10$	
$77.3 = \text{Tb} + \left[\frac{17}{25}\right].10$	
77.3 = Tb + 6.8	
),5= Tb	
Jadi, nilai median dari data tersebut adalah 77,3	
b. $Mo = Tb + \left[\frac{b_1}{b_1 + b_2}\right] \cdot p$	
$77,16 = \text{Tb} + \left[\frac{10}{10+5}\right].10$	
$77,16 = \text{Tb} + \left[\frac{10}{15}\right] \cdot 10$	
77.16 = Tb + 6.66	
, ,	
Jadi, nilai modus dari data tersebut adalah 77,16	
70.5 = Tb	

BUTIR SOAL POST-TEST

(Tes Akhir)

Sekolah :SMP Negeri 1 Darussalam

Mata Pelajaran : Matematika

Kelas/Semester :VIII/II
Materi Pokok :Statistika
Tahun Ajaran: 2017/2018

Petunjuk

1. Bacalah dengan teliti permasalahan yang diberikan.

- 2. Jawablah permasalahan di lembar Jawaban yang telah disediakan.
- 3. Jika terdapat kesalahan tidak perlu dihapus dan perbaiki di lembar jawaban yang disediakan

Indikator

- :- diberikan suatu data, siswa dapat menentukan rata-rata suatu data
- diberikan suatu data, siswa dapat menentukan median suatu data
- dibrerikan suatu data, siswa dapat menentukan modus suatu data
- 1. Rata-rata nilai Matematika susulan dari 11 orang adalah 7,2. Jika nilai ulangan Tomi tidak diikutsertakan. nilai rata-rata tersebut berubah menjadi 7,0. Tentukan nilai ulangan Tomi.
- Nilai Ani dan Bella masing-masing adalah 68 dan 75, nilai Budi lebih tinggi 10 poin dari nilai Bella, nilai Ridho sama dengan nilai Ani. Kemudian nilai Riki dan Rian masing-masing adalah 77-90, serta nilai Mia adalah nilai Ani di tambah dengan 5.

Tentukan

- a. Rata-rata
- b. Median
- 3. Tim dokter di SMP Negeri 1 Darussalam melakukan pemeriksaan berat pada hari gizi nasional, dari data frekuensi kumulatif dengan interval kelas 5 diketahui modusnya berada pada rentangan 51-60, jika selisih antara frekuensi kelas modus dengan kelas sebelumnya sama dengan 8 dan selisih antara frekuensi kelas modus dengan kelas sesudahnya sama dengan 4, maka modus dari data tersebut adalah

Kunci Jawaban Soal Post-test

No.	KunciJawaban	Skor
1.	A. Memahami Masalah Dik: Rata-rata = 7,2 dari 11 orang Nilai rata-rata tersebut berubah menjadi Rata-rata=7,0	3
	Dit: tentukan nilai ulangan Tomi	1
	B. Merencanakan Penyelesaian $\overline{x}_{11}=7,2$ $\overline{x}_{10}=7,0$ $x_{11}=?$	4
	C. Melaksanakan Rencana Rata-rata $(Mean) = \frac{jumlah \ nilai \ seluruh \ data}{banyak \ data}$	4

	$7,2 = \frac{x_1 + x_2 + x_3 + \dots, x_{11}}{11}, \text{ sehingga}$	
	Jumlah nilai data, yakni $x_1 + x_2 + x_3 + x_{11} = 79,2$. Jika nilai Tomi adalah x_{11} dikeluarkan, maka $7,0 = \frac{x_1 + x_2 + x_3 +, x_{10}}{10}$, sehingga $7,0 = \frac{79,2 - x_{11}}{10}$	
	$70 = 79,2 - x_{11}$	
	$x_{11} = 79,2 - 70$	
	= 9,2	
	D. Memeriksa Kembali Hasil yang Telah Diperoleh	2
	Rata-rata (Mean) = $\frac{79,2-9,2}{10}$ = $\frac{70}{10}$	
	$-\frac{1}{10}$	
	=7.0 Jadi, nilai ulangan Matematika Tomi tidak diikursertakan adalah 9,2	2
2.		
	A. Memahami Masalah	4
	Dik:	
	Nilai Ani = 68 Nilai Bella = 75	
	Nilai Budi lebih tinggi 10 poin dari nilai Belaa	
	Nilai Ridho adalah nilai Ani	
	Nili Riki = 90	
	Nilai Rian = 77	
	Nilai Mia = nilai Ani ditambah 5	

Dit: tentukan nilai rata-rata dan media	
B. Merencanakan Penyelesaian	
Nilai Budi = $75 + 10 = 85$	
Nilai Mia $= 68 + 5 = 73$	
Jadi nilai ketujuh siswa adalah	
C. Melaksanakan Rencana	
a. $\bar{x} = \frac{x_1 + x_2 + x_3 + x_5 + x_5 + x_6 + x_7}{x_5 + x_6 + x_7}$	
a. $\bar{x} = \frac{x_1 + x_2 + x_3 + x_5 + x_5 + x_6 + x_7}{n}$ $\bar{x} = \frac{68 + 68 + 73 + 75 + 77 + 85 + 90}{7}$	
$\bar{\chi} = \frac{536}{7}$	
7 =76,57	
b. $Me = \frac{X_{n+1}}{2}$	
_ X ₇₊₁	
$=\frac{X_{7+1}}{2}$	

$=\frac{x_8}{2}$	
$= x_4$	
= 75	
D. Memeriksa Kembali Hasil yang Telah Diperoleh	
a. $\overline{x} = \frac{x_1 + x_2 + x_3 + x_5 + x_6 + x_7}{n}$ $76,57 = \frac{68 + 68 + 73 + 75 + 77 + 85 + x_7}{7}$	4
$536 = 446 + x_7$ $90 = x_7$ Jadi, nilai rata-ratanya adalah 76,57	
b. $Me = \frac{X_{n+1}}{2}$	
$75 = \frac{X_{7+1}}{2}$	4
$75 = \frac{x_8}{2}$	
$75 = x_4$	

	Jadi, mediannya adalah 75	
3.		
	A. Memahami Masalah	
	Dik:	4
	Tepi bawah kelas = 50,5	
	Kelas sebelumnya = 8	
	Kelas sesudahnya = 4	
	Panjang kelas interval = 5	
	Dit: tentukan nilai modus dari data tersebut?	
	B. Merencanakan Penyelesaian	
	Tb = 50.5	4
	$b_1 = 8$	
	$b_2 = 4$	
	P = 5	
	Mo =?	
	C. Melaksanakan Rencana	
	$Mo = Tb + \left[\frac{b_1}{b_1 + b_2}\right] \cdot p$	4
	$\lfloor b_1 + b_2 \rfloor^{-1}$	
	$M_0 = 50.5 + \left \frac{3}{8+4} \right \cdot 5$	
	Mo = $50.5 + \left[\frac{8}{8+4}\right] \cdot 5$ Mo = $50.5 + \left[\frac{8}{12}\right] \cdot 5$	
	$M_0 = 50,5 + 3.33$	

Mo = 53,83	
D. Memeriksa Kembali Hasil yang Telah Diperoleh	
Mo = Tb + $\left[\frac{b_1}{b_1+b_2}\right]$. p	
Mo = Tb + $\left[\frac{b_1}{b_1 + b_2}\right]$. p 53,852 = Tb+ $\left[\frac{8}{8+4}\right]$. 5 53,852 = Tb + $\left[\frac{8}{12}\right]$. 5	
$53,852 = \text{Tb} + \left[\frac{8}{12}\right].5$	
53,852 = Tb + 3.33	
50,5 = Tb	
Jadi, nilai modus dari data tersebut adalah 53,83	
Jumlah Total	

Nama: MUTOKhima

Kelas:

Mata Pelajaran:

\mathcal{U}	Dit
	* Rala_rata = 7.2 dari 11 orang
	nilai rata-rata tersebut berubah mengadi 4
	X 1919 - TOLD = 7:0
,	
	X M=7,2
	3 10 = 7,16 4
	X11 = > - 7
	$\dot{X} = \dot{X}_1 + \dot{X}_2 + \dot{X}_3 + \dot{X}_4 + \dot{X}_5 + \dots + \dot{X}_n$
	72 = X1 + A2 + A3 71 X1
	n
	Y 1 + X2 + X3 + X11 ≥ 79.2
,	Jika nilai Tomi adalah XII dikeluarkan make 7,0 = X 1 + X 2 + X3 + X 10 Sebingga 7.0: 79,2
	7.0 = X + + X 2 + X 2 + X 10 (chippers) 20 30 3
3	
11 3	eata: roita = 79.2-9.2 7.0 - 792-
9	10 - 79.2 -
-	×1, =79,2-7
3	. 10
-	= 7.6
	Jadi nilai ulang majematika Tomi tidal
9	Jadinilai ulang makmatika Tomi talak dii kurser takan adarah 9.2
_	
	Dik
_	hilai an = 68
9	nitai Bella = 75
	nilai Budi lebih tragai la pain dan milai Rela
	niki lidho adalah nilai ahi
	ni lai lian =77
	nilai mid = nilai ini di tambah [
	OIL - FEDERALCOD PINI LOTO-LOTS GOVERNO
	Disal Budi =75 +10 = 85
	$a_1 \times a_1 = a_1 + a_2 = a_1 $
	Jadi Milai Ketuzuh (TSW2 adalah
٠.	a : X = X + X 2 X3 + XC + XC X 6 + X 7
	X = 84 F [8 + 17 + 75 + 77] DC 10=
	X = <u>531</u>
- 5	= 76.87 4
	- /

b. me =
$$\frac{x_{1}+1}{2}$$

= $\frac{x_{1}+1}{2}$
= $\frac{x_{2}}{2}$
= $\frac{x_{4}}{2}$

b.me =
$$\frac{Xn+1}{2}$$
 $7S = \frac{X_7+1}{2}$
 $7S = XP$
 $7S = X4$

Jadi mediannya adalah is

3/9 Dik Tepi bawal kalar =50,5 kalar Sebilumnya ze Feine Serudahnya=4

Panyang lacur Interval = 5

B. Diff: tentulain nilai modur dari data tersebut Tb=50.0

b. = 8 b. = 8 b. = 9 b = 5 $mo = 50.5 + \frac{8}{814}$

0.1 mo = 1 Tb + { b1 b1+b2 }.P 53.852 = Tb + (14).5 551852 = Tb+ (P) 53.052 = Tb +3;33

1T= 2.02

mo = Sois + { 8 } }; mo = Sois + 3. 33 mo = 53. BS2

Tada haai modus dari data tarsabut adalah. 57,262

Nama: Raja Fakmul

Kelas : VIII-9

Mata Pelajaran: Matematika

().	A) Mittal Manual March
17.	A) Metak Memahami masalah
	*. 1111 : Kala 1 = 7.12 . Jat! 11 organ
	*. Dik : Bala ! = 7.2. Jar! 11 prana *. Dik : tratukan oilai . Ulangan tomi.
	B) melak sacakan fengara
	X = Xtx2 + X2 + X1 + X5 + + X0
	212: X1 +72+X3 + X11
	112 - KI TT 1 + 13 + X II
2)	1 A. A. I
4)	WINESTON DICTION OF THE PROPERTY OF THE PROPER
	.Dik:: Mal. Aoi : 68
	Mlai Bella: 75
	Milai Buli Lebib Linga 10 Poin Jari nilai Bella
	WILDI Ridho Adalah nilar Asi
	MILA 1881 111 - 30
	MILAI MIA - MILAI AM Akanbah 3
	Ditateoturgo Ailai Rata 2 dan Malao
	B) Miterianakan Azareltxaian
	Mai Bul = 25 + 10 = 95
	C). mPlaksonokan Pricono
	9× × 1 + × 1 +× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1×
	X = 60 + 60 + 72 + 75 + 77 + 85 +90 3
	7
	√ 560 = 20
	? 6. Me = 2011
	b. Mp = 2011
	. 72+1
	. 4
	- 14 5 75
	5 74
3	A No. 1 A Lo
2,	} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Plk:Teps balkah kelas =50,5
	kelsi Selumosa -8
	keloe Sesulabina = 1
	Rit = tenturan nitai mako Jan Jata tersebut
	B) merencanakan feorelesian
	Tb = 50,5

c) melar sanakan Tencana

D.). memeriksa kembali hasil yang telah Jirenoleh

53-852=76+3.33 50,5=76 jal1 11/1 modus dans Jaha tersebut abalah 53-853

LEMBAR VALIDASI RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap Kurikulum Acuan : Kurikulum 2013 : Vina Yulianda Penulis Lasmi, S. Si, 19. Pd Nama Validator · Dosan Pekerjaan

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"

2 : berarti "kurangbaik"

3 : berarti "cukup baik" 4 : berarti "baik" 5 : berarti "sangat baik"

Penilajan ditinjan dari beberana asnek

No.	ASPEK VANC DINILAI		SKALA PENILAIAN				
NO.			3	4	5		
Ì	FORMAT 1. Kejelasan pembagian materi 2. Sistem penomoran jelas 3. Pengaturan ruang/tata letak 4. Jenis dan ukuran huruf				V V V V		
II	1. Kebenaran isi/materi 2. Dikelompokkan dalam bagian-bagian yang logis 3. Kesesuaian dengan Kurikulum 2013 4. Pemilihan strategi, pendekatan, metode dan sarana pembelajaran dilakukan dengan tepat, sehingga memungkinkan siswa aktif belajar 5. Kegiatan guru dan kegiatan siswa dirumuskan secara jelas dan operasional sehingga mudah dilaksanakan oleh guru dalam proses pembelajaran di kelas				V V V V		
	 Kesesuaian dengan alokasi waktu yang digunakan 	5					

	 Kelayakan pembelajaran 	sebagai perangkat
111		
C . 1	Penilaian umum	
	Rekomendasi/kesimp	ılan penilaian secara umum *):
a.	RPP ini:	b. RPP ini:
	1 : tidak baik	Belum dapat digunakan dan masih memerlukan konsultasi Dapat digunakan dengan banyak revisi
	2 : kurang baik	2: Dapat digunakan dengan banyak revisi
	3 : cukup baik	3 : Dapat digunakan dengan sedikit revisi
	4: baik	4 : Dapat digunakan tanpa revisi
	5 : baik sekali	
	*) lingkarilah nomor	/angka sesuai penilaian Bapak/Ibu
В.	Komentar dan sara	perbaikan Baptar diffe agur levin mudan d'em jan.

Validator

(1970060 7199905 2001

Banda Aceh, Ob April 2018

LEMBAR VALIDASI RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap Kurikulum Acuan : Kurikulum 2013 : Vina Yulianda : Fluido S. Pd : Guru Penulis Nama Validator Pekerjaan

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"

2 : berarti "kurangbaik"
3 : berarti "cukup baik"
4 : berarti "baik"
5 : berarti "sangat baik"

B. Penilaian ditiniau dari beberapa aspek

No.	ASPEK YANG DINILAI		SKALA PENILAIAN						
140.			2	3	4	5			
I	FORMAT 1. Kejelasan pembagian materi 2. Sistem penomoran jelas 3. Pengaturan ruang/tata letak 4. Jenis dan ukuran huruf				1111				
11	Kebenaran isi/materi Dikelompokkan dalam bagian-bagian yang logis Kesesuaian dengan Kurikulum 2013 Pemilihan strategi, pendekatan, metode dan sarana pembelajaran dilakukan dengan tepat, sehingga memungkinkan siswa aktif belajar Kegiatan guru dan kegiatan siswa dirumuskan secara jelas dan operasional sehingga mudah dilaksanakan oleh guru								
	dalam proses pembelajaran di kelas6. Kesesuaian dengan alokasi waktu yang digunakan				V				

	7. Kelayakan sebagai perangkat pembelajaran	
111	BAHASA 1. Kebenaran tata bahasa 2. Kesederhanaan struktur kalimat	v .
	Kejelasan petunjuk dan arahan Sifat komunikatif bahasa yang digunakan	V

a. RPP ini: 1 : tidak baik 2 : kurang baik 3 : cukup baik	pulan penilaian secara umum *): b. RPP ini: 1:Belum dapat digunakan dan masih memerlukan konsultasi 2: Dapat digunakan dengan banyak revisi 3: Dapat digunakan dengan sedikit revisi
1 : tidak baik 2 : kurang baik 3 : cukup baik	1:Belum dapat digunakan dan masih memerlukan konsultasi2: Dapat digunakan dengan banyak revisi
3 : cukup baik	2: Dapat digunakan dengan banyak revisi
	3 · Danat digunakan dengan sedikit revisi
·	5. Duput diguillatian deligni
4 baik	(4) Dapat digunakan tanpa revisi
5 : baik sekali	
*) lingkarilah nomo	r/angka sesuai penilaian Bapak/Ibu
	Banda Aceh, 06 April - 2018
	Banda Acen, Wall 2018
	Validator
	(ELVIDA. S.Pd) Nip. 197 80925 200801 2001
	(ELVIDA. S.Pd) Nip. 197 80925 200801 2001
	*) lingkarilah nomo B. Komentar dan sara

LEMBAR VALIDASI LKPD

: Matematika Mata Pelajaran Materi Pokok : Statistika Kelas/Semester : VIII/Genap : Kurikulum 2013 Kurikulum Acuan

: Vjna Yulianda Penulis : ...lasm1.15.51.1 Nama Validator

: Dosan Pekerjaan

A. Petunjuk:

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"

2 : berarti "kurang baik"
3 : berarti "cukup baik"
4 : berarti "baik"
5 : berarti "sangat baik"

B. Penilaian ditiniau dari beberapa aspek

	ASPEK YANG DINILAI		SKALA PENILAIAN						
No.		1	2	3	4	5			
I	FORMAT 1. Kejelasaaan pembagian materi 2. Memiliki daya tarik 3. Sistem penomoran jelas 4. pengaturan ruang/tata letak 5. Jenis dan ukuran huruf sesuai 6. Kesesuaian antara fisik LKPD dengan siswa					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
11	1. Kebenaran tata bahasa 2. Kesesuaian kalimat dengan taraf berpikir dan kemampuan membaca serta usia siswa 3. Mendorong minat untuk bekerja 4. Kesederhanaan struktur kalimat 5. Kalimat permasalahan/pertanyaan tidak mengandung arti ganda 6. Kejelasan petunjuk dan arahan 7. Sifat komunikatif bahasa yang digunakan					L L L L L L L L L L L L L L L L L L L			
Ш	ISI Kebenaran isi/materi Merupakan materi/tugas yang esensial Dikelompokkan dalam bagian-bagian yang logis					1			

menen	annya untuk mendorong siswa dalam mukan konsep/prosedur secara iri rakan sebagai perangkat pembelajaran
C. Penilaian u	mum
Kesimpulan	penilaian secara umum *):
a. LKPD ini:	b. LKPD ini:
1 : tidak bail	memerlukan konsultasi
- 100 Mg - 100 Mg	V
3 : cukup ba	aik 3: Dapat digunakan dengan sedikit revisi
4) baik	4: Dapat digunakan tanpa revisi
5 : baik sek	ali
D. Komentar	nor/angka sesuai penilaian Bapak/Ibu dan saran perbaikan as a la h Li L K P D di K Svanta dy Manen dus Media dan Kata
D. Komentar	dan saran perbaikan as a la h Lilk PD discovanta du manen
D. Komentar	dan saran perbaikan as a lah Lilkpl) diskovania dy manen dus media du tata
D. Komentar	dan saran perbaikan as a lah Lilkpl) diskovania dy manen dus media du tata
D. Komentar	dan saran perbaikan as a lan Lilkpl) discounta dy monen dus media den tara

LEMBAR VALIDASI LKPD

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap : Kurikulum 2013 Kurikulum Acuan : Vina Yulianda : Flyida S.Pd Penulis Nama Validator · Guru Pekerjaan

A. Petunjuk:

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"
2 : berarti "kurang baik"
3 : berarti "cukup baik"
4 : berarti "baik"
5 : berarti "sangat baik"

B. Penilaian ditinjau dari beberapa aspek

NT.	ASPEK YANG DINILAI		ALA	PEN	ILAIA	٩N
No.			2	3	4	5
I	FORMAT				1-	
	Kejelasaaan pembagian materi					
	Memiliki daya tarik					
	Sistem penomoran jelas				-	
	pengaturan ruang/tata letak					
	Jenis dan ukuran huruf sesuai				L	
	Kesesuaian antara fisik LKPD dengan siswa				L	
II	BAHASA				Western State	
	 Kebenaran tata bahasa 					
	2. Kesesuaian kalimat dengan taraf berpikir				L	
	dan kemampuan membaca serta usia siswa					
	Mendorong minat untuk bekerja					
	 Kesederhanaan struktur kalimat 				~	
	5. Kalimat permasalahan/pertanyaan tidak		19			
	mengandung arti ganda				1	
	Kejelasan petunjuk dan arahan				v	
	7. Sifat komunikatif bahasa yang digunakan				10	
Ш	ISI		Š .		1	
	 Kebenaran isi/materi 					
	Merupakan materi/tugas yang esensial				1	
	Dikelompokkan dalam bagian-bagian yang logis	7.			1	

Peranannya untuk mend menemukan konsep/ mandiri S. Kelayakan sebagai peran	orosedur secara	
C. Penilaian umum		
Kesimpulan penilaian secara w	num *);	
a. LKPD ini:	. LKPD ini:	
1 : tidak baik	Belum dapat digunakan memerlukan konsultasi Dapat digunakan dengan bany	dan masih
2 : kurang baik		
3 : cukup baik	Dapat digunakan dengan sedik	it revisi
(4): baik	(4) Dapat digunakan tanpa revisi	
5 : baik sekali		
*) lingkari nomor/angka sesuai pe.	(10) 91 000 00000	
D. Komentar dan saran perbaik	an	
		······
	Banda Aceh, OG - APril	2018
	Validator	
	Aleif (ELVIDA. 5. Hd Nip. 19780925 200801	
	(ELVIDA. S. Pd)

LEMBAR VALIDASI

PRE-TEST (TES AWAL)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap Kurikulum Acuan : Kurikulum 2013 Penulis : Vina Yulianda Nama Validator : Lasmi . S. Si . 19. Pd Pekerjaan : Dran

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"
2 : berarti "kurangbaik"
3 : berarti "cukup baik"
4 : berarti "baik"
5 : berarti "sangat baik"

B. Penilaian ditinjau dari beberapa aspek

	ASPEK YANG DINILAI		ALA	PEN	ILAL	AN
No.			2	3	4	5
1	FORMAT 1. Penulisan identitas sudah jelas 2. Jenis dan ukuran huruf sudah sesuai 3. Kejelasan petunjuk mengerjakan soal 4. Kelengkapan pedoman penskoran (rublik)					U U U
II	Kesesuaian soal dengan tujuan pembelajaran berdasarkan indikator pemecahan masalah					L
	 Kejelasan perumusan petunjuk soal Kejelasan maksud soal Kelayakan sebagai perangkat pembelajaran 					U
111	BAHASA 1. Kesesuaian bahasa yang digunakan pada soal dengan kaedah bahasa indonesia yang baik dan benar. 2. Kalimat soal tidak memiliki arti ganda 3. Rumusan kalimat soal menggunakan					U U U

	dan menggunal siswa.	can bahasa yang dikenal
C.	Penilaian umum	
	Rekomendasi/kesimpul	an penilaian secara umum *):
a.	Soal Postest ini:	b. Soal Postest ini:
	1 : tidak baik	1:Belum dapat digunakan dan masih memerlukan konsultasi
	2 : kurang baik	2: Dapat digunakan dengan banyak revisi
-	3 : cukup baik	3 : Dapat digunakan dengan sedikit revisi
	(4) baik	4 : Dapat digunakan tanpa revisi
	5 : baik sekali	
	*) lingkarilah nomor/an	ngka sesuai penilaian Bapak/Ibu
В.	Komentar dan saran p	perbaikan
	Soal duein	romercial disertai può pendi
	•••••	
	••••••	
		Banda Aceh, 06 July - 2018
		Validator
		Lexu:
		(Lasm, r. S. S. M. Pd.)

NIP. 197006071999052001

LEMBAR VALIDASI

PRE-TEST (TES AWAL)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap : Kurikulum 2013 Kurikulum Acuan : Vina Yulianda Penulis : Flyida S-Pol Nama Validator : Guru Pekerjaan

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

- 1 : berarti "tidak baik"

- 2 : berarti "kurangbaik"
 3 : berarti "cukup baik"
 4 : berarti "baik"
 5 : berarti "sangat baik"

B. Penilaian ditinjau dari beberapa aspek

	ACDEL VANC DINII AT		SKALA PENILAIAN						
No.	ASPEK YANG DINILAI	1	2	3	4	5			
I	FORMAT 1. Penulisan identitas sudah jelas 2. Jenis dan ukuran huruf sudah sesuai 3. Kejelasan petunjuk mengerjakan soal 4. Kelengkapan pedoman penskoran (<i>rublik</i>)				ンンンン				
П	1SI 1. Kesesuaian soal dengan tujuan pembelajaran berdasarkan indikator pemecahan masalah 2. Kejelasan perumusan petunjuk soal 3. Kejelasan maksud soal 4. Kelayakan sebagai perangkat pembelajaran								
III	 BAHASA Kesesuaian bahasa yang digunakan pada soal dengan kaedah bahasa indonesia yang baik dan benar. Kalimat soal tidak memiliki arti ganda Rumusan kalimat soal menggunakan bahasa yang sederhana, mudah dimengerti 								

C Penil					1	-	
C. I chii	aian umum						
Reko	mendasi/kesim _j	pulan penilaian secara ur	num *):				
a. Soal	Postest ini:	b. Soal Postest ini	:				
1 : tio	lak baik	1:Belum da	oat digu	nakan	da	n n	nasih
2 : kı	ırang baik	memerlukar 2: Dapat digur			yak re	evisi	
3 : cu	ıkup baik	3 : Dapat digu	nakan deng	gan sec	likit r	evisi	
(4). ba	nik	(4) Dapat digu	nakan tanp	a revis	si		
5 : ba	nik sekali						
* 1.		r/angka sesuai penilaian	Danak/Ib.				
			••••••		•••••	•••••	
		Banda	Aceh, 06	- 4	Pri1		.2018
		Valida	tor				
			ELVI)	leed of	.Pd		
		(1970000			••••••	.)

LEMBAR VALIDASI POST-TEST (TEST AKHIR)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap Kurikulum Acuan : Kurikulum 2013 Penulis : Vina Yulianda

: ...Lasm.1.5.51.19.79 Nama Validator Pekerjaan : .1/Kan

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"

2 : berarti "kurangbaik"

3 : berarti "cukup baik" 4 : berarti "baik"

5 : berarti "sangat baik"

B. Penilajan ditinjau dari beberapa aspek

No.	ASPEK YANG DINILAI		SKALA PENILAIAN						
INO.			2	3	4	5			
I	FORMAT 1. Kejelasan pembagian materi 2. Sistem penomoran jelas 3. Pengaturan ruang/tata letak 4. Jenis dan ukuran huruf					1000			
II	ISI 1. Kesesuaian soal dengan tujuan pembelajaran berdasarkan indikator pemecahan masalah					L			
	Kejelasan perumusan petunjuk soal Kejelasan maksud soal Kelayakan sebagai perangkat pembelajaran					0			
Ш	BAHASA 1. Kesesuaian bahasa yang digunakan pada soal dengan kaedah bahasa indonesia yang baik dan benar. 2. Kalimat soal tidak memiliki arti ganda 3. Rumusan kalimat soal menggunakan bahasa yang sederhana, mudah					2			

te ve	dimengerti da yang dikenal si	
C.	Penilaian umum	
	Rekomendasi/kesimpu	ulan penilaian secara umum *):
١.	Soal Postest ini:	b. Soal Postest ini:
	1 : tidak baik	l:Belum dapat digunakan dan masih _memerlukan konsultasi
	2 ; kurang baik	2: Dapat digunakan dengan banyak revisi
	3 : cukup baik	3 : Dapat digunakan dengan sedikit revisi
(4): baik	4 : Dapat digunakan tanpa revisi
	5 : baik sekali	
	*) lingkarilah nomor/o	angka sesuai penilaian Bapak/Ibu
	Komentar dan saran	perbaikan
	Soul diperh	antoi de Konutedi ya baik

01		
		Banda Aceh, 06 - ↓uli 2018
		Banda Aceh, 06 - Juli 2018 Validator
		*
		*
		*

LEMBAR VALIDASI POST-TEST (TEST AKHIR)

Mata Pelajaran : Matematika Materi Pokok : Statistika Kelas/Semester : VIII/Genap Kurikulum Acuan : Kurikulum 2013 Penulis : Vina Yulianda

Nama Validator : Elvida S.Pol Pekerjaan : Сиги

A. Petunjuk

Berilah tanda cek list (√) dalam kolom penilaian yang sesuai menurut pendapat Bapak/Ibu!

Keterangan:

1 : berarti "tidak baik"

2 : berarti "kurangbaik"

3 : berarti "cukup baik" 4 : berarti "baik"

5 : berarti "sangat baik"

B. Penilaian ditinjau dari beberapa aspek

No.	ASPEK YANG DINILAI	SF	ALA	PEN	ILAIA	IN
140.	ASPER YANG DINILAI	1	2	3	4	5
I	FORMAT 1. Kejelasan pembagian materi 2. Sistem penomoran jelas 3. Pengaturan ruang/tata letak 4. Jenis dan ukuran huruf				セレレン	
11	ISI 1. Kesesuaian soal dengan tujuan pembelajaran berdasarkan indikator pemecahan masalah 2. Kejelasan perumusan petunjuk soal 3. Kejelasan maksud soal 4. Kelayakan sebagai perangkat pembelajaran				ソンソン	
Ш	 BAHASA Kesesuaian bahasa yang digunakan pada soal dengan kaedah bahasa indonesia yang baik dan benar. Kalimat soal tidak memiliki arti ganda Rumusan kalimat soal menggunakan bahasa yang sederhana, mudah 				V	

	dimengerti dan n	nenggunakan bahasa	П		
C. Penilais	yang dikenal siswa.				
		enilaian secara umum *).		
		Soal Postest ini:	× • 1		
1 : tidak			digunakan	dan	masih
2 : kura		memerlukan kons 2: Dapat digunakan	ultasi		
3 ; cuku	p baik	3 ; Dapat digunakan	dengan sed	likit revi	si
4 : baik		4 : Dapat digunakan	tanpa revis	i	
5 : baik	sekali				
*) linok	arilah nomor/anoka	sesuai penilaian Bapa	k/Ihu		
600 1100	(CEC)				
B. Komen	tar dan saran perb	aikan			
	5-825				
				••••••	
		Banda Aceh,,	·06 - API	r.(1	
		Banda Aceh,,		r.(1	
		Banda Aceh,,	OG - API Elector VIDA, S.	ril Pd	2018
		Banda Aceh,, Validator	OG - API Elector VIDA, S.	ril Pd	2018

Data Ordinal hasil Pre-test Kelas Kontrol Siswa

	Kode			Skor	Indik	ator S	Soal 1	-			IXOII	Skor		ator S	Soal 2	2		
No.	Siswa		1	a			1	b			2	2a			2	2b		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	APS	0	0	2	0	0	3	0	0	0	0	0	0	0	0	2	0	7
2	AF	2	3	1	1	3	3	0	1	1	2	2	0	1	0	0	0	20
3	DU	3	1	1	0	1	0	1	0	2	3	1	0	1	0	1	0	15
4	AH	4	0	4	0	0	0	3	0	0	0	0	0	2	0	0	0	13
5	FE	0	0	1	0	0	2	0	0	0	0	0	0	2	1	3	0	9
6	HU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3
7	SH	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0	0	4
8	LIM	1	0	2	0	1	1	0	0	0	0	0	0	0	0	2	0	7
9	LI	1	0	1	0	1	0	2	0	1	0	2	0	1	0	2	0	11
10	NS	0	0	3	0	0	0	3	0	0	0	0	0	0	0	2	0	8
11	IRM	0	0	0	0	0	2	3	1	1	0	0	0	0	0	0	0	7
12	MA	2	0	3	0	0	2	0	0	0	0	1	0	0	0	2	0	10
13	RJ	0	0	3	0	3	0	3	0	0	0	0	0	0	0	0	0	9
14	MU	0	0	0	0	0	2	3	1	1	0	0	0	0	0	0	0	7
15	SA	3	0	1	0	4	0	1	0	2	3	1	0	0	0	0	0	15
16	SB	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	4
17	IY	2	0	3	0	4	0	0	0	0	0	0	0	0	0	0	0	9
18	UA	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	5
19	SAZ	0	0	2	0	3	4	2	0	1	0	0	0	0	0	0	0	12
20	SAF	2	0	4	0	3	3	0	1	1	2	2	0	0	0	0	0	18
21	ZZF	3	0	1	0	4	0	1	0	2	3	1	0	0	0	0	0	15
22	ZAP	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	4
23	MAZ	1	0	2	0	1	2	0	0	0	0	2	0	2	2	0	0	12
24	MK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Data Ordinal hasil Pre-test Kelas Eksperimen Siswa

	Kode			Skor	Indik	ator S	Soal 1					Skor	Indik	ator	Soal 2	2		
No.	Siswa		1	a			1	b			2	2a			2	2b		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	AZ	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
2	AS	1	0	2	0	1	0	2	0	1	0	3	0	1	0	3	0	14
3	AR	0	0	1	1	0	2	0	1	0	4	1	0	0	0	2	0	12
4	ADS	2	0	2	0	0	0	3	0	0	0	0	0	0	0	0	0	7
5	EAS	0	0	0	2	0	1	0	1	2	0	1	1	0	3	0	1	12
6	ML	0	1	2	0	4	0	1	0	2	0	3	0	2	0	2	1	18
7	NA	0	0	1	1	0	2	0	1	0	4	1	0	0	0	2	0	12
8	MFA	3	2	2	0	2	0	2	3	1	4	0	4	0	0	0	0	23
9	MGA	0	0	2	0	0	0	4	0	0	0	0	0	0	0	2	0	8
10	NAP	3	0	4	0	0	0	3	0	0	0	0	0	3	0	0	0	13
11	SH	1	1	2	0	2	1	1	0	2	1	0	0	1	0	2	0	14
12	MM	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2
13	PY	0	1	2	0	4	0	1	0	2	0	3	0	2	0	2	1	18
14	SRI	2	0	2	0	0	0	2	0	0	0	1	0	0	0	0	0	7
15	SR	3	0	4	0	0	0	3	0	0	0	0	0	3	0	0	0	13
16	RD	0	0	2	0	0	0	4	0	0	0	0	0	0	0	0	0	6
17	RM	2	0	2	0	1	0	0	0	2	0	2	0	1	0	1	0	11
18	RF	4	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	8
19	HA	0	0	2	0	3	0	2	0	0	0	2	0	0	0	0	0	9
20	PS	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2
21	ZH	0	0	2	0	0	0	2	0	0	0	1	0	0	0	0	0	5
22	ZR	3	3	0	1	0	3	0	4	0	0	0	3	0	0	0	0	17
23	AMP	4	0	2	0	2	0	1	0	0	0	0	0	0	0	0	0	9
24	MA	0	0	1	1	0	2	0	1	0	4	1	0	0	0	2	0	12

Data Ordinal hasil Post-test Kelas Kontrol Siswa

	Kode	Sko	r Indik	otor S	ool 1		Sko	r Indik	ator S	oal 2		Sko	r Indik	entor S	onl 2]
No.	Siswa	SKO	HIIGIK	aioi S	oai i			2	la la	2	b	SKO	HIIGIK	aioi S	oai 3	
		1	2	3	4	1	2	3	4	3	4	1	2	3	4	
1	APS	4	0	4	0	4	4	3	0	3	0	4	0	3	2	31
2	AF	4	0	2	0	2	0	0	0	0	0	0	0	0	0	8
3	DU	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
4	AH	4	4	2	0	4	4	3	0	4	0	4	3	4	2	38
5	FE	1	4	1	0	1	0	1	1	1	0	1	1	4	0	16
6	HU	2	0	1	0	1	0	1	0	1	0	1	1	1	0	9
7	SH	1	3	1	0	1	1	1	0	1	2	4	1	1	1	18
8	LIM	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
9	LI	4	0	2	0	4	3	0	0	0	0	4	0	3	2	22
10	NS	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
11	IRM	1	0	2	0	1	0	1	0	1	0	1	0	1	1	9
12	MA	4	4	2	3	1	4	4	3	4	2	4	3	4	3	45
13	RJ	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
14	MU	4	3	4	2	1	1	4	3	4	2	4	2	4	3	41
15	SA	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
16	SB	2	1	1	0	1	2	2	1	0	0	2	0	1	0	13
17	IY	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
18	UA	4	0	2	0	4	4	3	0	0	0	3	0	0	2	22
19	SAZ	1	0	2	0	0	0	0	0	1	0	1	0	2	1	8
20	SAF	1	0	1	0	0	0	1	0	0	0	0	0	2	0	5
21	ZZF	0	0	0	0	0	0	0	3	0	1	0	1	0	1	6
22	ZAP	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
23	MAZ	3	2	4	1	4	1	0	0	0	0	3	0	4	2	24
24	MK	3	2	4	1	4	1	0	0	0	0	3	0	4	2	24

Data Ordinal hasil Post-test Kelas Eksperimen Siswa

No.	Kode Siswa	Sko	r Indik					r Indik	ator S				r Indik	ator S	oal 3	
1,0.								2	la	2	b					
		1	2	3	4	1	2	3	4	3	4	1	2	3	4	
1	AZ	4	0	4	0	4	4	3	0	3	0	4	4	3	3	36
2	AS	4	0	1	0	4	3	3	0	0	0	4	2	0	0	2
3	AR	4	4	4	1	4	4	4	4	4	4	4	4	3	2	50
4	ADS	4	4	4	1	4	4	4	4	4	4	4	4	3	2	50
5	EAS	4	0	2	0	4	4	3	0	0	0	4	0	3	2	26
6	ML	4	4	4	4	4	4	4	4	4	4	4	4	3	3	54
7	NA	1	1	1	0	1	1	1	0	1	0	1	1	1	0	10
8	MFA	4	0	0	0	4	4	4	0	4	0	4	4	0	0	28
9	MGA	4	0	4	1	4	4	4	4	4	4	4	4	3	2	46
10	NAP	4	0	4	0	4	4	3	0	2	0	4	4	3	3	35
11	SH	4	0	1	0	4	3	2	0	0	0	0	0	0	0	14
12	MM	4	0	2	0	4	3	3	0	1	0	2	0	3	0	22
13	PY	4	0	4	0	4	4	3	0	4	0	4	4	3	2	36
14	SRI	4	4	4	1	4	4	4	4	4	4	4	4	3	2	50
15	SR	3	0	2	0	4	4	3	0	4	0	4	4	4	3	35
16	RD	4	0	0	0	4	3	3	0	4	0	4	0	4	4	30
17	RM	2	0	0	0	3	3	3	0	0	0	3	0	3	2	19
18	RF	4	0	2	0	4	4	3	0	4	0	4	4	3	3	35
19	HA	4	0	2	0	4	3	3	0	0	0	4	0	3	2	25
20	PS	4	0	4	2	4	3	3	0	3	0	4	4	4	3	38
21	ZH	4	2	4	2	4	4	3	0	2	0	4	2	4	2	37
22	ZR	4	0	4	0	4	4	3	0	4	0	4	4	3	2	36
23	AMP	4	4	4	1	4	4	4	4	4	4	4	4	3	2	50
24	MA	4	0	2	0	4	4	3	0	4	0	4	4	3	3	35

HasilKonversiSkala Ordinal Menjadi Interval Data *Pre-test*Kelas Kontrol Menggunakan Excel

			Succes	ive Detail			
Col	Category	Freq	Prop	Cum	Density	Z	Scale
1	0	274	0,7135	0,7135	0,3403	0,5638	1,00
	1	41	0,1068	0,8203	0,2621	0,9166	2,21
	2	34	0,0885	0,9089	0,1639	1,3337	2,59
	3	25	0,0651	0,9740	0,0605	1,9424	3,07
	4	10	0,0260	1,0000	0,0000		3,80

Sumber: Ms. Excel

				Sko	rIndik	atorSo	al 2					Sko	rIndik	atorSo	al 2]
No.	KodeSiswa		1	a			1	b			2	a			2	lb.]
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	APS	1	1	2,59	1	1	3,07	1	1	1	1	1	1	1	1	2,59	1	21
2	AF	2,59	3,07	2,21	2,21	3,07	3,07	1	2,21	2,21	2,59	2,59	1	2,21	1	1	1	33
3	DU	3,07	2,21	2,21	1	2,21	1	2,21	1	2,59	3,07	2,21	1	2,21	1	2,21	1	30
4	AH	3,8	1	3,8	1	1	1	3,07	1	1	1	1	1	2,59	1	1	1	25
5	FE	1	1	2,21	1	1	2,59	1	1	1	1	1	1	2,59	2,21	3,07	1	24
6	HU	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3,07	1	18
7	SH	2,21	1	2,21	1	2,59	1	1	1	1	1	1	1	1	1	1	1	20
8	LIM	2,21	1	2,59	1	2,21	2,21	1	1	1	1	1	1	1	1	2,59	1	23
9	LI	2,21	1	2,21	1	2,21	1	2,59	1	2,21	1	2,59	1	2,21	1	2,59	1	27
10	NS	1	1	3,07	1	1	1	3,07	1	1	1	1	1	1	1	2,59	1	22
11	IRM	1	1	1	1	1	2,59	3,07	2,21	2,21	1	1	1	1	1	1	1	22

		•	•		i	ī	i	•	•	i	•	•	i	i	•	i	ı
12	MA	2,59	1	3,07	1	1	2,59	1	1	1	1	2,21	1	1	1	2,59	1
13	RJ	1	1	3,07	1	3,07	1	3,07	1	1	1	1	1	1	1	1	1
14	MU	1	1	1	1	1	2,59	3,07	2,21	2,21	1	1	1	1	1	1	1
15	SA	3,07	1	2,21	1	3,8	1	2,21	1	2,59	3,07	2,21	1	1	1	1	1
16	SB	1	1	3,8	1	1	1	1	1	1	1	1	1	1	1	1	1
17	IY	2,59	1	3,07	1	3,8	1	1	1	1	1	1	1	1	1	1	1
18	UA	2,21	1	3,8	1	1	1	1	1	1	1	1	1	1	1	1	1
19	SAZ	1	1	2,59	1	3,07	3,8	2,59	1	2,21	1	1	1	1	1	1	1
20	SAF	2,59	1	3,8	1	3,07	3,07	1	2,21	2,21	2,59	2,59	1	1	1	1	1
21	ZZF	3,07	1	2,21	1	3,8	1	2,21	1	2,59	3,07	2,21	1	1	1	1	1
22	ZAP	1	1	3,8	1	1	1	1	1	1	1	1	1	1	1	1	1
23	MAZ	2,21	1	2,59	1	2,21	2,59	1	1	1	1	2,59	1	2,59	2,59	1	1
24	MK	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

HasilKonversiSkala Ordinal Menjadi Interval Data *Pre-test*Kelas **EksperimenMenggunakan Excel**

			Succes	ive Detail			
Col	Category	Freq	Prop	Cum	Density	Z	Scale
1	0	260	0,6771	0,6771	0,3590	0,4596	1,00
	1	41	0,1068	0,7839	0,2931	0,7853	2,15
	2	50	0,1302	0,9141	0,1569	1,3662	2,58
	3	19	0,0495	0,9635	0,0799	1,7934	3,09
	4	14	0,0365	1,0000	0,0000		3,72

Sumber:Ms.Excel

				Sko	rIndik	atorSo	al 2					Sko	orIndik	atorSo	al 2			
No.	KodeSiswa		1	a			1	b			2	a			2	b		
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	AZ	2,58	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	18
2	AS	2,15	1	2,58	1	2,15	1	2,58	1	2,15	1	3,09	1	2,15	1	3,09	1	28
3	AR	1	1	2,15	2,15	1	2,58	1	2,15	1	3,72	2,15	1	1	1	2,58	1	26
4	ADS	2,58	1	2,58	1	1	1	3,09	1	1	1	1	1	1	1	1	1	21
5	EAS	1	1	1	2,58	1	2,15	1	2,15	2,58	1	2,15	2,15	1	3,09	1	2,15	27
6	ML	1	2,15	2,58	1	3,72	1	2,15	1	2,58	1	3,09	1	2,58	1	2,58	2,15	31
7	NA	1	1	2,15	2,15	1	2,58	1	2,15	1	3,72	2,15	1	1	1	2,58	1	26
8	MFA	3,09	2,58	2,58	1	2,58	1	2,58	3,09	2,15	3,72	1	3,72	1	1	1	1	33
9	MGA	1	1	2,58	1	1	1	3,72	1	1	1	1	1	1	1	2,58	1	22
10	NAP	3,09	1	3,72	1	1	1	3,09	1	1	1	1	1	3,09	1	1	1	25
11	SH	2,15	2,15	2,58	1	2,58	2,15	2,15	1	2,58	2,15	1	1	2,15	1	2,58	1	29

•	•								•		•		•		•	•		
12	MM	1	1	2,58	1	1	1	1	1	1	1	1	1	1	1	1	1	18
13	PY	1	2,15	2,58	1	3,72	1	2,15	1	2,58	1	3,09	1	2,58	1	2,58	2,15	31
14	SRI	2,58	1	2,58	1	1	1	2,58	1	1	1	2,15	1	1	1	1	1	22
15	SR	3,09	1	3,72	1	1	1	3,09	1	1	1	1	1	3,09	1	1	1	25
16	RD	1	1	2,58	1	1	1	3,72	1	1	1	1	1	1	1	1	1	20
17	RM	2,58	1	2,58	1	2,15	1	1	1	2,58	1	2,58	1	2,15	1	2,15	1	26
18	RF	3,72	1	2,58	1	2,58	1	1	1	1	1	1	1	1	1	1	1	22
19	HA	1	1	2,58	1	3,09	1	2,58	1	1	1	2,58	1	1	1	1	1	23
20	PS	1	1	2,58	1	1	1	1	1	1	1	1	1	1	1	1	1	18
21	ZH	1	1	2,58	1	1	1	2,58	1	1	1	2,15	1	1	1	1	1	20
22	ZR	3,09	3,09	1	2,15	1	3,09	1	3,72	1	1	1	3,09	1	1	1	1	28
23	AMP	3,72	1	2,58	1	2,58	1	2,15	1	1	1	1	1	1	1	1	1	23
24	MA	1	1	2,15	2,15	1	2,58	1	2,15	1	3,72	2,15	1	1	1	2,58	1	26

HasilKonversiSkala Ordinal Menjadi Interval Data *Post-test*Kelas Kontrol Menggunakan Excel

	Succesive Detail									
Col	Category	Freq	Prop	Cum	Density	Z	Scale			
1	0	136	0,4048	0,4048	0,3875	-0,2410	1,00			
	1	53	0,1577	0,5625	0,3940	0,1573	1,92			
	2	42	0,1250	0,6875	0,3540	0,4888	2,28			
	3	36	0,1071	0,7946	0,2844	0,8226	2,61			
	4	69	0,2054	1,0000	0,0000		3,34			

Sumber: Ms. Excel

	Kode	Sko	or Indik	ator So	al 1		Sko	or Indik	ator So	al 2		Sko	or Indik	ator So		
No.	Siswa							2	2a	2	b					
		1	2	3	4	1	2	3	4	3	4	1	2	3	4	
1	APS	3,34	1	2,28	1	2,28	1	1	1	1	1	1	1	1	1	19
2	AF	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
3	DU	3,34	3,34	2,28	1	3,34	3,34	2,61	1	3,34	1	3,34	2,61	3,34	2,28	36
4	AH	1,92	3,34	1,92	1	1,92	1	1,92	1,92	1,92	1	1,92	1,92	3,34	1	26
5	FE	2,28	1	1,92	1	1,92	1	1,92	1	1,92	1	1,92	1,92	1,92	1	22
6	HU	1,92	2,61	1,92	1	1,92	1,92	1,92	1	1,92	2,28	3,34	1,92	1,92	1,92	28
7	SH	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
8	LIM	3,34	1	2,28	1	3,34	2,61	1	1	1	1	3,34	1	2,61	2,28	27
9	LI	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
10	NS	1,92	1	2,28	1	1,92	1	1,92	1	1,92	1	1,92	1	1,92	1,92	22
11	IRM	3,34	3,34	2,28	2,61	1,92	3,34	3,34	2,61	3,34	2,28	3,34	2,61	3,34	2,61	40

						_	_									
12	MA	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
13	RJ	3,34	2,61	3,34	2,28	1,92	1,92	3,34	2,61	3,34	2,28	3,34	2,28	3,34	2,61	39
14	MU	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
15	SA	2,28	1,92	1,92	1	1,92	2,28	2,28	1,92	1	1	2,28	1	1,92	1	24
16	SB	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
17	IY	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	2,61	1	1	2,28	27
18	UA	1,92	1	2,28	1	1	1	1	1	1,92	1	1,92	1	2,28	1,92	20
19	SAZ	1,92	1	1,92	1	1	1	1,92	1	1	1	1	1	2,28	1	18
20	SAF	1	1	1	1	1	1	1	2,61	1	1,92	1	1,92	1	1,92	18
21	ZZF	3,34	1	2,28	1	3,34	3,34	2,61	1	1	1	3,34	1	2,61	2,28	29
22	ZAP	2,61	2,28	3,34	1,92	3,34	1,92	1	1	1	1	2,61	1	3,34	2,28	29
23	MAZ	2,61	2,28	3,34	1,92	3,34	1,92	1	1	1	1	2,61	1	3,34	2,28	29
24	MK	3,34	1	2,28	1	2,28	1	1	1	1	1	1	1	1	1	19

HasilKonversiSkala Ordinal Menjadi Interval Data *Post-test*Kelas Kontrol Menggunakan Excel

	Succesive Detail									
Col	Category	Freq	Prop	Cum	Density	Z	Scale			
1	0	92	0,2738	0,2738	0,3330	-0,6013	1,00			
	1	18	0,0536	0,3274	0,3610	-0,4472	1,69			
	2	27	0,0804	0,4077	0,3882	-0,2334	1,88			
	3	50	0,1488	0,5565	0,3949	0,1422	2,17			
	4	149	0,4435	1,0000	0,0000		3,11			

Sumber: Ms. Excel

	Kode	Sko	or Indik	ator So	al 1		Sko	or Indik	r Indikator Soal 2 Skor Indikator Soal 3							
No.	Siswa							2	2a	2	b					
		1	2	3	4	1	2	3	4	3	4	1	2	3	4	
1	AZ	3,11	1	3,11	1	3,11	3,11	2,17	1	2,17	1	3,11	3,11	2,17	2,17	3
2	AS	3,11	1	1,69	1	3,11	2,17	2,17	1	1	1	3,11	1,88	1	1	24
3	AR	3,11	3,11	3,11	1,69	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	1,88	40
4	ADS	3,11	3,11	3,11	1,69	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	1,88	40
5	EAS	3,11	1	1,88	1	3,11	3,11	2,17	1	1	1	3,11	1	2,17	1,88	27
6	ML	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	2,17	42
7	NA	1,69	1,69	1,69	1	1,69	1,69	1,69	1	1,69	1	1,69	1,69	1,69	1	21
8	MFA	3,11	1	1	1	3,11	3,11	3,11	1	3,11	1	3,11	3,11	1	1	29
9	MGA	3,11	1	3,11	1,69	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	1,88	38
10	NAP	3,11	1	3,11	1	3,11	3,11	2,17	1	1,88	1	3,11	3,11	2,17	2,17	31
11	SH	3,11	1	1,69	1	3,11	2,17	1,88	1	1	1	1	1	1	1	21

							_		_	_		_	_			
12	MM	3,11	1	1,88	1	3,11	2,17	2,17	1	1,69	1	1,88	1	2,17	1	24
13	PY	3,11	1	3,11	1	3,11	3,11	2,17	1	3,11	1	3,11	3,11	2,17	1,88	32
14	SRI	3,11	3,11	3,11	1,69	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	1,88	40
15	SR	2,17	1	1,88	1	3,11	3,11	2,17	1	3,11	1	3,11	3,11	3,11	2,17	31
16	RD	3,11	1	1	1	3,11	2,17	2,17	1	3,11	1	3,11	1	3,11	3,11	29
17	RM	1,88	1	1	1	2,17	2,17	2,17	1	1	1	2,17	1	2,17	1,88	22
18	RF	3,11	1	1,88	1	3,11	3,11	2,17	1	3,11	1	3,11	3,11	2,17	2,17	31
19	HA	3,11	1	1,88	1	3,11	2,17	2,17	1	1	1	3,11	1	2,17	1,88	26
20	PS	3,11	1	3,11	1,88	3,11	2,17	2,17	1	2,17	1	3,11	3,11	3,11	2,17	32
21	ZH	3,11	1,88	3,11	1,88	3,11	3,11	2,17	1	1,88	1	3,11	1,88	3,11	1,88	32
22	ZR	3,11	1	3,11	1	3,11	3,11	2,17	1	3,11	1	3,11	3,11	2,17	1,88	32
23	AMP	3,11	3,11	3,11	1,69	3,11	3,11	3,11	3,11	3,11	3,11	3,11	3,11	2,17	1,88	40
24	MA	3,11	1	1,88	1	3,11	3,11	2,17	1	3,11	1	3,11	3,11	2,17	2,17	31

A. Konversi Data Ordinal Ke Interval *Pretest* Kelas Eksperimen Dan Kontrol

1. Konversi Data Ordinal Ke Interval Pretest Kelas Eksperimen

Hasil Penskoran *Pretest*Kemampuan Pemecahan Masalah Matematika Kelas Eksperimen

Skala	0	1	2	3	4	Jumlah
Soal 1	114	24	34	11	9	192
Soal 2	146	17	16	8	5	192
Frekuensi	260	41	50	19	14	384

Sumber: Hasil Penskoran Pretest Kemampuan Pemecahan Masalah Matematika Siswa

Data ordinal di atas akan diubah menjadi data yang berskala interval sehingga menghasilkan nilai interval. Berdasarkan hasil dari pengolahan data *pretest*kemampuan pemecahan masalah matematikakelas eksperimen dengan menggunakan MSI (*Method of Successive Interval*) dapat dilihat pada tabel berikut ini:

a. Menghitung Frekuensi

Nilai Frekuensi *Pretest* Kemampuan Pemecahan Masalah MatematikaKelas Eksperimen

Transmitti Tratematika Emsperimen									
Skala Skor Ordinal	Frekuensi								
0	260								
1	41								
2	50								
3	19								
4	14								
Jumlah	384								

Sumber: Hasil Penskoran PretestKemampuan Pemecahan

Masalah MatematikaKelas Eksperimen

b. Menghitung Proporsi

Proporsi dihitung dengan membagi setiap frekuensi dengan jumlah seluruh responden yaitu , ditunjukkan seperti pada Tabel di bawah ini:

Menghitung Proporsi

Skala Ordinal	Frekuensi	Proporsi
0	260	$P_1 = \frac{260}{384} = 0,6771$
1	41	$P_2 = \frac{41}{384} = 0,1068$
2	50	$P_3 = \frac{50}{384} = 0,1302$

3	19	$P_4 = \frac{19}{384} = 0,0494$
4	14	$P_5 = \frac{14}{384} = 0,0365$

Sumber: Hasil Perhitungan Proporsi 2018

c. Menghitung Proporsi Komulatif (PK)

Proporsi Kumulatif dihitung dengan menjumlahkan proporsi berurutan untuk setiap nilai.

$$PK_1 = 0,6771$$

$$PK_2 = 0,6771 + 0,1068 = 0,7839$$

$$PK_3 = 0,7839 + 0,1302 = 0,9141$$

$$PK_4 = 0,9141 + 0,0494 = 0,9635$$

$$PK_5 = 0,9635 + 0,0365 = 1,0000$$

d. Menghitung nilai Z

Nilai z diperoleh dari tabel distribusi normal baku. Dengan asumsi bahwa Proporsi Kumulatif berdistribusi normal baku. $PK_1 = 0,6771$, sehingga nilai p yang akan dihitung ialah 0,6771 - 0,5 = 0,1771.Letakkan di kanan karena nilai $PK_1 = 0,6771$ adalah lebih kecil dari 0,5. Selanjutnya lihat tabel z yang mempunyai luas 0,1771. Ternyata nilai tersebut terletak diantara nilai z = 0,45 yang mempunyai luas 0,1736 dan z = 0,46 yang mempunyai luas 0,1772. Oleh karena itu, nilai z untuk daerah dengan proporsi 0,1 771. diperoleh dengan cara interpolasi sebagai berikut:

- Jumlahkan kedua luas yang mendekati 0,4063.

$$x = 0,1736 + 0,1772$$
$$x = 0,3508$$

- Kemudian cari pembagi sebagai berikut:

$$pembagi = \frac{x}{nilai\ yang\ diinginkan} = \frac{0,3508}{0,1771} = 1,9808$$

Keterangan:

0,3508 =jumlah antara dua nilai yang mendekati 0,4063 pada tabel z 0,1771 =nilai yang diinginkan sebenarnya 1,9808 =nilai yang akan digunakan sebagai pembagi dalam interpolasi Sehingga, nilai z dari interpolasi adalah:

$$z = \frac{0,45 + 0,46}{1,9808} = \frac{0,91}{1,9808} = 0,4594$$

Karena z berada di sebelah kanan nol, maka z bernilai positif. Dengan demikian $PK_1 = 0,6771$ memiliki nilai $z_1 = 0,4594$. Dilakukan perhitungan yang sama untuk PK_2 , PK_3 , PK_4 dan PK_5 . Untuk PK_2 ditemukan nilai $z_2 = 0,7854$, PK_3 ditemukan nilai $z_3 = 1,3657PK_4$ ditemukan nilai $z_4 = 1,7941$, sedangkan PK_5 nilai z nya tidak terdefinisi.

e. Menghitung nilai densitas fungsi Z

Nilai Densitas F(z) dihitung dengan menggunakan rumus sebagai berikut:

$$F(z) = \frac{1}{\sqrt{2\pi}} Exp\left(-\frac{1}{2}z^2\right)$$

Untuk
$$z_1 = 0.4594 \text{ dengan} \pi = \frac{22}{7} = 3.14$$

$$F(0,4594) = \frac{1}{\sqrt{2\left(\frac{22}{7}\right)}} Exp\left(-\frac{1}{2}(0,4594)^2\right)$$
$$= \frac{1}{\sqrt{\frac{44}{7}}} Exp\left(-\frac{1}{2}(0,2110)\right)$$
$$= \frac{1}{2,5071} Exp(-0,1055)$$
$$= \frac{1}{2,5071} \times 0,8999$$

$$F(0,4594) = 0,3589$$

Jadi, nilai $F(z_1)$ sebesar 0,3589.

Lakukan dengan cara yang sama untuk menghitung $F(z_2)$, $F(z_3)$, $F(z_4)$ dan $F(z_5)$ ditemukan nilai $F(z_2)$ sebesar 0,2930, $F(z_3)$ sebesar 0,1570, $F(z_4)$ sebesar 0,0798 dan $F(z_5)$ sebesar 0.

f. Menghitung Scala Value

Untuk menghitung Scale Value digunakan rumus sebagai berikut:

$$SV = \frac{Density \ at \ lower \ limit - density \ at \ upper \ limit}{area \ under \ upper \ limit - area \ under \ lower \ limit}$$

Keterangan:

Density at lower limit = Nilai densitas batas bawah

Density at upper limit = Nilai densitas batas atas

Area under upper limit = Area batas atas

Area under lower limit = Area batas bawah

Untuk mencari nilai densitas, ditentukan batas bawah dikurangi batas atas sedangkan untuk nilai area batas atas dikurangi dengan batas bawah. Untuk SV_0 nilai batas bawah untuk densitas pertama adalah 0 (lebih kecil dari 0,3230) dan untuk proporsi kumulatif juga 0 (di bawah nilai 0,6770).

Nilai Proporsi Kumulatif dan Densitas (F(z))

Proporsi Kumulatif	Densitas (F(z))
0,6771	0,3589
0,7839	0,2930
0,9141	0,1570
0,9635	0,0798
1,0000	0

Sumber: Nilai Proporsi Kumulatif dan Densitas (F(z))

Berdasarkan Tabel di atasdidapatkan Scale Value sebagai berikut:

$$SV_1 = \frac{0 - 0,3589}{0,6771 - 0} = \frac{-0,3589}{0,6771} = -0,5300$$

$$SV_2 = \frac{0,3589 - 0,2930}{0,7839 - 0,6771} = \frac{0,0659}{0,1068} = 0,6170$$

$$SV_3 = \frac{0,2930 - 0,1570}{0,9141 - 0,7839} = \frac{0,1360}{0,1302} = 1,0445$$

$$SV_4 = \frac{0,1570 - 0,0798}{0,9635 - 0,9141} = \frac{0,0772}{0,0494} = 1,5628$$

$$SV_5 = \frac{0,0798 - 0}{1 - 0,9635} = \frac{0,0798}{0,0365} = 2,1863$$

g. Menghitung Penskalaan

Nilai hasil penskalaan dapat dihitung dengan cara sebagai berikut:

(a) SV terkecil (SV min)

Ubah nilai SV terkecil (nilai negatif terbesar) diubah menjadi sama dengan 1.

$$SV_1 = -0.5300$$

Nilai 1 diperoleh dari:

$$-0,5300 + x = 1$$

$$x = 1 + 0,5300$$

$$x = 1,5300$$

Jadi,
$$SV min = 1,5300$$

(b)Transformasi nilai skala dengan rumus

$$y = SV + |SV min|$$

$$y_1 = -0.5300 + 1.5300 = 1$$

$$y_2 = 0.6170 + 1.5300 = 2.1470$$

$$y_3 = 1.0445 + 1.5300 = 2.5745$$

$$y_4 = 1.5628 + 1.5300 = 3.0928$$

$$y_5 = 2.1863 + 1.5300 = 3.7163$$

Hasil akhir skala ordinal yang diubah menjadi skala interval dapat dilihat pada Tabel di bawah ini sebagai berikut:

Hasil Mengubah Skala Ordinal Menjadi Interval pada Kelas Eksperimen Menggunakan MSI Prosedur Manual

Skala	Freku	Propor	Proporsi	Nilai Z	Densita	Scala	Scale
Ordinal	ensi	si	Komulatif	Milai Z	s f(z)	Value	Scale
0	260	0,6771	0,6771	0,4594	0,3589	-0,5300	1,0000
1	41	0,1068	0,7839	0,7854	0,2930	0,6170	2,1470
2	50	0,1302	0,9141	1,3657	0,1570	1,0445	2,5745
3	19	0,0494	0,9635	1,7941	0,0798	1,5628	3,0928

4 14 0,0365 1,0000 <i>Td</i> 0,0000 2,1863 3,7	4
--	---

Sumber: Hasil Mengubah Data Ordinal Menjadi Data Interval Menggunakan Method Successive Interval (MSI) Prosedur Manual, 2018

2. Konversi Data Ordinal Ke Interval *Pretest* Kelas Kontrol

Hasil Penskoran *Pretest*Kemampuan Pemecahan Masalah Matematika Kelas Kontrol

Skala	0	1	2	3	4	Jumlah
Soal 1	120	26	16	20	10	192
Soal 2	154	15	18	5	0	192
Frekuensi	274	41	34	25	10	384

Sumber: Hasil Penskoran Pretest Kemampuan Pemecahan Masalah Matematika Siswa

Prosedur MSI di atas juga diterapkan untuk kelompok skor yang lain, yaitu skor pretest kelas kontrol. Dari prosedur yang telah dilakukan, diperoleh hasil konversi data ordinal menjadi data interval yaitu sebagai berikut:

Hasil Mengubah Skala Ordinal Menjadi Interval pada Kelas Kontrol Menggunakan MSI Prosedur Manual

Skala	Freku	Propor	Proporsi	Nilai Z	Densita	Scala	Scale
Ordinal	ensi	si	Komulatif	T VII al Z	s f(z)	Value	Scare
0	274	0,7135	0,7135	0,5637	0,3403	-0,4770	1,0000
1	41	0,1068	0,8203	0,9174	0,2619	0,7341	2,2111
2	34	0,0886	0,9089	1,3345	0,1637	1,1086	2,5856
3	25	0,0651	0,9740	1,9446	0,0602	1,5899	3,0669
4	10	0,0260	1,0000	Td	0,0000	2,3159	3,7929

Sumber: Hasil Mengubah Data Ordinal Menjadi Data Interval Menggunakan Method Successive Interval (MSI) Prosedur Manual, 2018

B. Konversi Data Ordinal Ke Interval Postest Kelas Eksperimen Dan Kontrol

1. Konversi Data Ordinal Ke Interval *Postest* Kelas Eksperimen

HasilPenskoran*Postest*Kemampuan Pemecahan Masalah Matematika KelasEksperimen

Skala	0	1	2	3	4	Jumlah
Soal 1	36	10	10	1	39	96
Soal 2	41	5	3	25	70	144
Soal 3	15	3	14	24	40	96
Frekuensi	92	18	27	50	149	336

Sumber: HasilPenskoran Postest Kemampuan Pemecahan Masalah Matematika Siswa

Data ordinal di atas akan diubah menjadi data yang berskala interval sehingga menghasilkan nilai interval. BerikutmerupakanProsedur MSI yang sudahditerapkan di atas juga diterapkan untuk kelompok skor yang lain, yaitu skor *postest* kelas eksperimendan skor *postest* kelaskontrol. Dari prosedur yang telah dilakukan, diperoleh hasil konversi data ordinal menjadi data interval yaitu sebagai berikut:

Hasil Mengubah Skala Ordinal Menjadi Skala Interval pada Kelas EksperimenMenggunakan MSI Prosedur Manual

			88				
Skala	Freku	Propor	Proporsi	Nilai Z	Densita	Scala	Scale
Ordinal	ensi	si	Komulatif	INIIai Z	s f(z)	Value	Scarc
0	92	0,2738	0,2738	-0,6012	0,3329	-1,2159	1,0000
1	18	0,0536	0,3274	-0,4471	0,3609	-0,5224	1,6935
2	27	0,0803	0,4077	-0,2335	0,3881	-0,3387	1,8772
3	50	0,1488	0,5565	0,1421	0,3948	-0,0450	2,1709
4	149	0,4435	1,0000		0,0000	0,8902	3,1061

Sumber: HasilMengubah Data Ordinal Menjadi Data Interval Menggunakan Method Successive Interval (MSI) Prosedur Manual, 2018

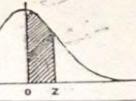
2. Konversi Data Ordinal Ke Interval Pretest Kelas Kontrol

HasilPenskoran*Postest* Kemampuan Pemecahan Masalah Matematika KelasKontrol

Skala	0	1	2	3	4	Jumlah
Soal 1	38	13	19	5	21	96
Soal 2	70	24	6	15	29	144
Soal 3	28	16	17	16	19	96
Frekuensi	136	53	42	36	69	336

Sumber: Hasil Penskoran Postest Kemampuan Pemecahan Masalah Matematika Siswa

Selanjutnya, data ordinal *Posttest* kemampuan pemecahan masalah matematika di Tabel akan kita ubah menjadi data yang berskala interval shingga menghasilkan nilai interval dengan cara yang sama, data ordinal yang diubah menjadi data interval dapat dilihat sebagai berikut:

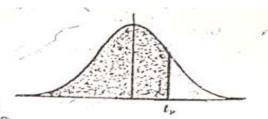

Hasil Mengubah Skala Ordinal Menjadi Interval pada Kelas Kontrol Menggunakan MSI Prosedur Manual

Skal	la	Freku	Propor	Proporsi	Nilai Z	Densita	Scala	Scale
Ordin	nal	ensi	si	Komulatif	Milai Z	s f(z)	Value	Scale
0		136	0,4048	0,4048	-0,2423	0,3872	-0,9566	1,0000
1		53	0,1577	0,5625	0,1573	0,3939	-0,0425	1,9141
2		42	0,1250	0,6875	0,4885	0,3540	0,3192	2,2758

3	36	0,1071	0,7946	0,8230	0,2843	0,6508	2,6074
4	69	0,2054	1,0000	td	0,0000	1,3841	3,3402

Sumber: Hasil Mengubah Data Ordinal Menjadi Data Interval Menggunakan Method Successive Interval (MSI) Prosedur Manual, 2018 DAFTAR F

LUAS DIBAWAH LENGKUNGAN NORMAL STANDAR Dari 0 ke 2 (Bilangan dalam badan daftar menyatakan desimal).

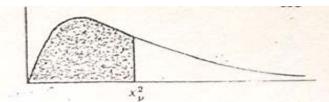

z	o	3	2	3	4	5	- 6	7	8	9
-	0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
0.0	0395	0438	0478	0517	0557	0596	0636	0675	0714	0754
0,1	0793	0832	0871	0910 -	0948	0987	1026	1064	1103	1141
C,2	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,3	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,4	1004								0100	2224
0.5	1915	1950	1985,	2019	2054	2088	2123	2157	2190	2549
0.6	2258	2291	2324	2357	2389	2422	2454	2486	2518 2823	2852
0.7	2580	2612	2642	2673	2704	2734	2764	2794		3133
0,8	2881	2910	2939	2967	2996	3023	3051	3078	3106	3389
0.9	3159	3186	3212	3238	3264	3289	3315	3340	3365	2202
0.0						-		3577	3599	3621
1.0	3413	3438	3461	3485	3508	3531	3554	3790	3810	3830
1.1	3643	3665	3686	3708	3729	3749	3770	3980	3997	4015
1,2	3849	3869	3888	3907	3925	3944.	3962	4147	4162	4177
1.3	4032	4049	4066	4082	4099	4115	4131	4292	4306	4319
1.4	4192	4207	4222	4236	4251	4265	4279	4232		10000
****						. 224	4106	4418	4429	4441
1,5	4332	4345	4357	4370	4382	4394	4515	4525	14535	4545
1,6	4452	4463	4474	4484	4495	4505	4608	4616	4625	463
1.7	4554	4564	4573	4582	4591	4599	4686	4693	4699	4706
1.8	46.41	4649	4656	4664	4671	4678	14750	4756	4761	476
1.9	1713	4719	4726	4732	4738	4744	7 4750	4100)		
						4200	4803	4808	4812	481
20	1772	4778	4783	4788	4793	4798	4846	4850	4854	485
2.1	4821	4826	4830	4834	4838	4842	4881 -	4884	4887	489
22	4861	4864	4868	4871	4875	4906	4909	4911	4913	491
2.3	4893	1896	4898	4901	4904	4906	4931	4932	4934	493
2.4	4918	4920	4922	4925	4927	4323	7552			
			1,550,000	10.401	4945	4946	4948	4949	4951	495
2.5	4938	4940	4941	4943	4959	4960	4961	4962	4963	496
2.6	1953	4955	4956	4957		4970	4971	4972	4973	497
2.7	4965	4966	4967	4968	4969	4978	4979	4979	4980	498
2.8	4974	4975	4976	4977	4977	4984	4985	4985	4986	498
2.9	4981	4962	4982	4983	4984	4904	4303	4500		
in a that						4989	4989	4989	4990	499
3.0	4987	4987	4987	4988	4988	4992	4992	4992	4993	499
	4990	4991	4991	4991	4992			4995	4995	495
1.1	4993	4993	4994	4994	4994	4994	4994		4996	49
3.2	4995	4995	4995	4996	4996	4996	4996	. 4996		
1,3		4997	4997	4997	4997	4997	4997	4997	4997	499
d	4997	455.	-						CONTRACTOR OF THE PARTY OF THE	-
		4998	4998	4998	4998	4998	4998	4998	4998	49
,5	4998		4999	4999	r4999	4999	4999	4999	4999	49
,6	4998	4998		4999	4999	4999	4999	4999	4999	49
.7	4999	4999	4999		4999	4999	4999	4999	4999	49
s	4999	4999	4999	4999	7.040.00	5000	5000	5000	5000	50
.9	5000	5000	5000	5000	5000	2000	3000	5000	-	

Sumber: Theory and Problems of Statistics, Spiegel, M.R., Ph.D., Schaum Publishing Co., New York, 1961.

DAFTAR G

Nilai Persentil
Untuk Distribusi t

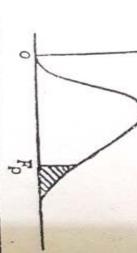
V = dk
(Bilangan Dalum Badan Daltar
Menyatakan t_p)



	-		1			10				
ν	t 0,925	° 0,89	t 0,975	t 0,55	t 0,50	t 0.80	1 0.75	6 0,70	t 0,60	t 0.55
1	63,66	31,82		6.31	3,08	1,376	1,000	0.727	0.525	0,150
2	9,92	6.96	4,30	2,92	1.89	1,061	0,816	J,617	0,289	0,14
3	5,84	1,54	3,18	2.35	1,64	0.978	0.765	0,584	0,277	0.130
-2	4.60	3.75	2.78	2,13	1.53	0,311	0.711	0,569	0.271	5,12
5	4,03	3,36	2,57	2,02	1.13	0,520	0,727	0.559	0,367	0.435
6	3,71	3,14	2,45	1.94	1.44	0.906	0.718	0.553	0.265	0,131
7	3,50	3.00	2,35	1,00	1,42	0.896	0.711	0.549	0,263	0.1.3
21	3,36	2,30	2,31	1.86	1,-46	0,889	0,70%	6,546	0.262	0.100
19	3,25	2.82	2,26	1,83	1,38	6,883	0.703	0,51.1	0,261	0,125
10	3,17	2.76	2,23	1,81	1,37	0,879	0.700	0.542	0.260	0,129
7.1	3,11	2,72	2,20	1.80	1,36	0,876	0,697	0,540	0.260	0.129
12	3,06	2.68	2,18	1.78	1,36	0,873	0,695	0,539	0,259	0,128
13	3,01	2,55	2,16	1.77	1,35	0.870	0,691	0.538	0,259	0,128
14	2,98	2,62	2,14	1.76	1,34	0,868	0,692	0.537	0.258	0,128
15	2,95	2,50	2,13	1.75	1,34	0,866	0.691	0,536	0,258	0,128
16	2,92	2,58	2,12	1.75	1,34	0,365	0.690	0.535	0,258	0,128
17	2,90	2,57	2,11	1.74	1.33	0,863	0,689	0,534	0,257	0,128
3.1	2,88	2.55	2,10	1,73	1,33	0.862	0,688	0,534	0,257	0,127
19	2,86	7.54	2,09	1.73	1,33	0,861	0,688	0,533	0,257	0,127
20	2,84	2,53	2.09	1,72	1,32	0,860	0.687	0,533	0,257	0,127
21	2,83	2,52	2,06	1,72	1,32	0,859	0,686	0,532	0.257	0.127
22	2,82	2,51	2,07	1,72	1,32	0,858	0.686	0,532	0,256	0.127
23	2,81	2,50	2,07	1,7;	1,32	0,858	0,685	0,532	0,256	0.127
24	2,80	2,49	2,06	1,71	1,32	0,857	0,685	0,531	0,256	0,127
25	2.79	2,48	2,06	1.71	1.32	0,856	0,684	0,531	0,256	0,127
6	2,78	2.48	2,06	1.71	1,32	-0.856	0,684	0,531	0.256	0.127
7	2,77	2,47	2,05	1,70	1,31	6,855	0,684	0,531	0,256	0,127
8	2,75	2.47	2,05	1.70	1.31	0.855	0,683	0,530	0,256	0.127
3	2,76	2,46	2,04	1.70	1.31	0,854	0,683	0,530	0,256	0,127
0 1	2.75	2,46	2,04	1.70	1,31	0,854	0,583	0,530	0,256	0,127
0	2.70	2,42	2.02	1,68	1,30	0,851	0,681	0,529	0.255	0.126
0	2,66	2.39	2,00	1.67	1,30	0.848	0,679	0.527	0,254	0,126
0	2,62	2.36	1.98	1,66	1,29	p,845	0,677	0,526	0.254	0.126
.	2,58	2,33	(1,96)	1.645	1,28	0,842	0.674	0.524	0,253	0,126

Sumber: Statistical Tables for Biological, Agricultural and Medicul Research, Fisher, R.A. dan Yales . F.,
Table III, Oliver & Boyd I.I.d., Edinburgia.

DAFTAR B.


Nilai Persentil
Untuk Distribusi × 2
V = dk
(Bilangan Dalam Badan Daftar
Menyatakan × 2
)

ν	×2 0,995	×2,99	× 2 0,975	× 20,95	2 0.90	× 2 0,75	× 2 0.50	× 2 0,25	× 6.10	× 0,05.	× 0,025	× 0.01	×2,005
				3 %						/			
	CAMEES	-027242	100	2.84	2.71	1.32	0.455	0.102	0.016	10,004		0.0002	0.000
1	7.88	6,63	5.02		4.61	2.77	1.39	0.575	0.211	0.103	0.051	0.0201	0.010
2	10,6	9,21	7,38	5.99		4.11	2.37	1.21	0.584	0.352	0.216	0,115	
3	12.6	11.3	9.35	7.81	6.25		3.36	1,92	1.06	0.711	0.484	0.297	0.207
-1	14.9	13.3	11.1	9749	1.28	5,39	3,30						
						Wester	V 44+	200	1.61	1.15	0.831	0.554	0.412
5	116.7	15.1	123	11.1	9.24	6.63	4.35	2,67		1.64	1.24	0.872	0.676
6	18.5	16.8	1.1.1	12:6	10.6	7.84	5.35	3.45	2,20	2.17	1.69	1.24	0.989
7	20.3	18.5	16.0	14.1	12.0	9.04	6.35	1.25	2.83	2.73	2.18	1.65	1.34
н	22.0	20.1	17.5	15.5	1.4.4	10.2	7.31	5.07	3.49		2.70	2.09	1.73
9	23.6	21.7	19.0	16.9	11.7	11.4	8.31	5.90	4,17	3,33	13%	7	
53	200.00										3,25	2.56	2:16
	n= n	23.2	20.5	18.3	16.0	12,5	9.34	6.74	4.87	3,94		3.05	2.60
10	25.2		21.9	119.7	17.3	13.7	10.3	7.58	5.58	4,57	3.82	3.57	3,07
11	26.8	24.7		21.0	18.5	14,8	11.3	8.44	6.30	5.23	4.40		3.57
12	28.3	26.2	23.3	22.4	19.8	16.0	12.3	9,30	7.04	5.89	5,01	4,11	1.07
13	29.8	27,7	24.7		21.1	17,1	13,3	10.2	7.79	6.57	5,63	1.66	3.07
1.4	31.3	29.1	26.1	23.7	21,1	11.1	10,0						
	i i			120723		200	14.3	11.0	8,55	7.26	6.26	5,23	1.60
15	32.8	30.6	27.5	25.0	22.3	13.2	15.3	11.9	9.31	7.96	6.91	5.81	5.14
16	3 1.3	32.0	28.8	26.3	23.5	19.4		12.5	10.1	8.67	7.56	6,41	5.70
17	35.7	33.4	10.2	27.6	24.5	20.5	16.3	13.7	10,9	9,39	8,23	7.01	6.26
18	37.2	34.8	24.5	28.9	26.0	21.6	17.3		11.7	10.1	8.91	7.63	6,54
3 :0	38.6	36.2	32.9	30.1	27.2	22.7	18.3	14.6	****				
1.2.						and the second				10.9	9.59	8.26	7.43
	10.0	37.6	31.2	31 4	28.4	23.8	19.3	15,5	12,4		10,3	8.90	8,03
30		38.9	35.5	32.7	29.6	24,9	20.3	16,3	13,2	11.6	11,0	9,54	8.64
21	41.4	40.3	36.8	33.9	30.8	26.0	21.3	17.2	14.0	12,3		10.2	9,26
22	12.5		38.1	35.2	32.0	27.1	22.3	18.1	14.8	13.1	11.7	10,9	9.89
23	44.2	41.6		36.4	53.2	28,2	23,3	19.0	15.7	13.8	12.4	10.5	200
24	45.6	13,61	319,4								12/22/21		105
	1			37.7	21.4	29.3	24.3	19,9	16,5	14.6	13,1	ALCOHOLD BOOK	10.5
25	411.51	1.3.35	10.6		35.6	30.1	25.3	20.8	17,3	15,4	13,8		11.2
26	18.2	15.0	1.1 '41	25.75		31.5	26.3	21,7	18,1	16,2	14.6	12.9	11.8
->-	19.6	-17.0	43.2	70.1	36.7	32.6	27.3	22,7	18.9	16.9	15,3	13.6	12.5
28	51.0	18.3	14.5	11.3	37.9		28.3	23.6	19,8	17.7	16,0	14,3	13,1
	52,3	19.6	15.7	12.6	39.1	33.7	200,00	2010			1000000		
-2:3	1					277.77	000	24,5	20,6	18.5	16.8	15.0	13,8
		50,9	17.0	43.8	40.3	31.8	29.3	17000000	29.1	26.5	24.4	22,2	20.7
30	53.7	63.7	59,3	55.8	51.8	45,6	39,3	33,7		34.8	32.4	29.7	28,0
10	56.8		71.4	67.5	63.2	56.3	49.3	42,9	37.7			37.5	35.5
50	79,5	76.2	- 83.5	79,1	74.1	.67,9	59,3	52.3	46.5	43.2	40,5	01,0	- Control
60	92.0	88,4	110.0	2000	575.5	1000				15/20	10000	Televisia .	43.3
					85,5	77.6	69.3	61,7	55.3	51.7	48.8	15.4	
70	104,2	100.4	95.0	90.5			79.3	71.1	64.3	60.4	57.2	53.5	51.2
	116.3	112.3	106.6	101.9	96.6	88.1		80.6	73,3	69.1	63.6	61.8	59.2
80	The state of the s	124.1	118.1	113.1	107.6	98,6	89.3		82.4	77.9	74.2	70.1	6.3
90	128.3		129.6	124.3	118.5	109.1	99.3	90.1	-	1100	13.5	The same of the sa	
OO.	110.2	135.8	A. Constitute	110000					-				

Sumber: Table of Percentage Points of the * Distribution, Thompson, C.M., Biometrika, Vol. 32 (1941).

Nildi Penentil
Ustuk Dietribusi F
(Bilangan Dalam Bedan Deftar
Menyakakan F_p i Baris Atas Uniuk
p = 0.08 dan Baris Barash Uniuk p = 0.01)

100	(0	1	6	0=	-	4	ы	-	penyebut	
10,50	5,32	5,69	13,74	16,61	7,71	34,12	18,51	161	-	-
8,02	8,65	9.53	5,14	13,77	8.9	9,55	19,00	200	20	
6,99	7,59	8,45	9.A 11.7 00.0	12,00	16,69	29 45	19,16	216	ω	
6,42	7,01	7,85	915	5,19	15,98	9,12	19,25	823	-	
6,34	6,63	7,45	8,75	10.97	6,26	9,01	19,30	5764	o=	1
5.80	6,37	7,19	8.42	10,01	6,16	8,94	19,33	5859	o.	15
5,62	6,19	7.00	8,26	355	6,09	27.63	19,36	5928		3X.
5.4.	6,03	6,513	8,10	10,27	14,80	8,84	99,36	239	00	
5,35	5,91	6,71	1.10	10,15	5,00	27,34	19,38	241 6022	40	
8 8,13	5,82	6,62	1.87	4,74	14,54	27,23	19,39	8056	10	
3 3,10	2 5,7.1	2 6,54	7 7,79	5 9,96	5,93	27,13	19,40	243 6082	=	
8 5,31	5,67	6,47	1,72	9,89	5,91	8.74 27.05	19,41	6106	12	٠,
1 5,00	7 5,56	7 3,52	7,60	9,77	14,24	26,92	99,43	8142	14	g k b
00 4,92	5 5,48	5 6,27	0 3,92	9,68	5,84	26,83	19,43	246	18	pembilan
2.93 1,80	3,16	0,15	7 (0	9,56	5,80	26,69	99,45	5208	10	101
	16 (3,)2 578	5 6,07	-1 3	9,4,53	5,77	26,64	19,45	6234	24	-
1.18	2 3,08	1 3,38	7.23	7 9,38	13,83	26,50	19,46	250	30	
2.85 2		S 5,90	3 7,14	8 9,19	3 13,74	26,41	19,47	6286	40	4
1,58 2	3,05 3 5,11 5		7 3,75	9 9,24	6,70	26,30	19,47	6307	8	
276	5,03	5,85 5			9 13,61	8,57	19,48	6323		
4,45	5,00	5,78	7,02	9,17 4		7 8,56	8 19,49	6334		1
126	386.7	0,28	0,99	9,10	13,57 1					
1,75	2,96	5,70	0,09	9,07	13,65	26,18 2	19,49 1			1
	1,88	5,67	0,98	9,04	5,64	26,14	19,50			1
2,71	2,93	8,05	5,83	9,02	13,46	26,12	19,50	888	8	1

5	penyrbas	10	=	ä	E	=	E	5	=	5	3 15	: 2		: ::	t
	-	98.00	2.2	9.33	9.0	2.8	22	23	#. f.	86	i î	8,10	SE	25	30
		1.10	7,20	3.58	4,70	0.51	5.56	ês	8,11	6,01	5.52	5.49	775	52	8 5
		5.71	6,22	249	7.4	5.51	5.7	25	513	3 6	3,01	25	4.07	1,05	4.76
	-	5,99	5,87	5.26	5,18	25.	58	4.73	6.8	1.52	88	65	÷ř	52	şş
	60	5,64	5.32	5,06	4.90	5 8	82	1.35	2.81	£3	55	4,10	4.02	2 8	12
	0	5,39	5.07	3.8	4.62	4 2 5	1,11	127	1,70	1,66	22	3,87	60 p3	13 13 74 56 60 60	3,13
	7	5.21	1.01	1,92	1 2	4.27	123	28	(# 12 (9 (8) (2) (2)	5 5 5 5	53 53 -3 68 -3 58	3,71	2.42	2,47	¥ 2
	or	3,07	2,95 1,71	4.85	\$ -3 -4 -13	4.70	20.2	(4 t) (4 t) (4 t)	14 13 -3 G 9 G	3 13	3,63	3.45	3,51	3,40	12.8
	9	4.95	4.50	1.80	2,72	1,03	2,59	W 13	2,50	3,46	3 A 3	3,65	2.37	C 43	3,33
	10	2,97	1.54	1,30	4,107	3.92	3,55	3.69	3.46	3.4	4.4	(a)3 (a (a (a (a (a (a)	3.32	2,30 3,26	12 12 12 12 12 13
ح	=	4.7.94 .1.94	64 43 60 43 61 60	4.72	2.63	3.56	(4 p) (5 p) (6 p)	3,45	3,52	2,37	3,36	2.31 3.30	22 12	3,126 3,136	2.24 3.14
* dk p	1.2	1,71	2,79	2,69 4,16	2,60	3.53	14 E	3.55	4 3	3,34	3,30	13 l3 13 l3	2,25	3 12	3,07
pembling	=	1.60	4,74	2,64	2,85	3.76	2.8	3,45	3,35	377	14 to	3,13	3,27	3,13	13 13
	16	4.52	2,70	3,98	2,51	3.11	2,39	2,11	3.23	4.0	3.12	3.03	2,15	2 H	32 10
	20	427	2.65	2 20	2.46	3.3	3,33	64 63 63 63 65 68	2.23	3,07	3.13	2,12	2.09	2.07	2 5
	21	1,33	1,02	3,78	1.42		55	2.24	24.52	3.82	2.11	2 62	2.80	2.03	22
	30	1,70	95	2.46	2,38	3,31	3,25	12.23	3.25	7,11	200	2.2	38	1.57	2,62
1	6	2.61							2,11	2,07	2,02	1,99	2,63	1.93	2.53
	50	2,64	2,60	3,56	2,32	322	3,07	22.13	2,56	22.04	2,70	2,03	1,53	1,91	25.
	75	2,61	2,47	2,36	2,26	3,14	3,15	2,00	2,79	2,28	22,2	2,92	2,51	1,87	10.0
	8	2,59	2,43	2,35	2.26	2,19	2,12	2,07	2,02	1,98	2.60	8,5	2,47	17.84	1.82
100	200	3,96	3,65	2,32	3,21	3,26	2,10	2,01	1,99	1.95	2,54	2,67	1.84	2.37	1.79
	800	3,93	3,62	2,31	3.22	3,02	2.58	202	1,87	1,93	2,51	1,85	1.82	1,50	12:1
	8	3,91	2,40	2,30	3.16	3,23	2,07	2,01	1.98	1,92	2.4	22	13 P	1.78	1.76

DATTAR	V ₂ - dk	24	2	26	1	77	E	3	8		r	36	z	6	9	t	*	+8
I (lan)vtan	-	1.25	6	577	7,72	7,08	7.20	7,08	25	7.50	7,44	.7,39	7,35	7.31	7,27	14.0	1,05	14.0
5	-	3,40	3,36	3,57	3,6	5,49	5,45	5,53	3,32	25	0 4 12 12 0 00		ASSOCIATION OF		6,13	5,12	5,10	3.19
1		3,01	2.5	2,69	8 6	88	2,95	1.92	4.92	4.98	1,88	200	1,85	4.2	2,83	4,282	121	
1	-	4.78	2.76	2.74	2.73	4	4,07	4,00	1.02	2,67	3,65	3,89	3,86	3.61	3,80	3,78	3,76	2,36
	o	3,90	200	2,59	2,57	3,79	12.8	3,73	2,83	2.5	3,49	u 14 0.6 0.6 0.6	2,46	2,45	3,44	3,48	3,42	3,42
1		3,67	2.49	2,47	2,46	3,56	3,44	2,43	3,42	3,42	3,38	2,36	2,35	3,29	3,26	92	2,30	2,30
1	-3	3,50	2.41	2.39	2,37	3,39	3,36	2,35	3,30	2,32	3,21	313	3,10	3,25	3,10	3,07	2,22	3,01
1	on	2,36	2,34	232	2,30	3,26	3,23	3,20	3,27	2,25	3,08	3,04	3,02	2,18	22.2	2,16	2 2,14	2,14
	9	3,25	3.22	1,27	12 5	3,14	3,24	3,08	3,04	3,01	2,17	2.15	2,14	2,12	2,11	2.10	2 2,82	2,08
	10	3,17	3.13	2,22	2,20	3,06	3,03	3,08	2,98	2,14	2,12	2,10	22.00	2,07	2,06	2.7	2 2,73	8 2,03
1	=	3,09	3,05	2,18	2,16	2,98	2,15	2,14	222	2,10	2,08	2,78	2,76	2,73	7 2,70	5 2,08	2,00	1 2,64
Y - a	12	3,03	2,16	22,16	10	2,93	22.12	2,10	2.09	2,80	2,765	2,72	2,02	2,63	1,99	8 2,62	6 2,60	9 1,96
0	14	2,13	2,11	2.10	2,06	2,83	2,80	2,08	220	2.02	4.c. 8.2	2.62	1,96	2,56	2,5	2 2.52	7 1,91	8 2,48
m 5 11 a	16	2,85	2,81	2,05	2,03	2.74	2,02	2,68	1,99	2,62	2,58	2.54	2,51	6 2,49	1 1,89	2 1,88	0 2,42	8 2,40
8 0	28	2,74	2,00	1,99	1,97	20	258	2.67	2,55	2,51	1,89	2,43	2,40	9 2,37	6 1,82	1 2,32		1,79 10 2,28
	24	2,68	2,62	2,58	1.93	2.00	2,52	1,49	2,47	1.86	2,38	2,362	0 1.80	7 2,29	5 1,78	1,76		
	30	2,58	1,92	1,90	1,88		7.44	2,41	2,38	2,34	2,30	1,78	2 2,22	9 1,74	10	2.		2,20 2.
	10	2,49	1,87	1,85	1,84	1,00	2,35	1,80	2,29		2,21				17 2,08	25	2,13 1,	
	50	2,44	2,40	2,82										1 2,06		1,66 1. 2,06 2.	- 1	
	76	2,36	1,80	1,78		971					1,67			181		2,00 1	1,62	
-	8 8	2,33	1,77	1,76									82	97 1,69	10.40	1,58	1,57	
	200	1 42	2,23	2,19	2,16	1.6					1,08					1,88	1.84	2.5
1	174			9 2,16									1,97	1.88	1,64	1,52	1,51	
-	8 8										1,94			1,01	1,80	1,78	1,48	1,47
1	41	1	17	180	10	65	8	99	00.0	8.5	91	87	1,63	1,61	1,78	1.48	1,46	17

Dokumen Penelitian

DAFTAR RIWAYAT HIDUP

1. NamaNama : Vina Yulianda

2. Tempat /Tanggal Lahir : Kp. Aie/ 06 Juli 1995

3. Jenis Kelamin : Perempuan

4. Agama : Islam

5. Kabupaten/Suku : Simeulue/Aceh6. Status : Belum Kawin

7. Alamat : JlnLingkar Kampus Uin Ar-Raniry, Desa Tanjung

Seulamat, Darussalam, Banda Aceh.

8. Pekerjaan/NIM : Mahasiswa/261324676

9. Namaorangtua

a. Ayah : Darulib. Ibu : Juharni

10. Pekerjaanorangtua

a. Ayah : Nelayanb. Ibu : Guru

11. Alamat orang tua : Desa Kp.aie, Kec.Simeulue Tengah, Kab.

Simeulue

12. Pendidikan

a. Sekolah Dasar
 b. SMP
 c. SMA
 d. SMP Negeri 1 Simeulue Tengah 2010
 d. SMA Negeri 1 Simeulue Tengah 2013

d. Perguruan Tinggi : Fakultas Tarbiyah dan Keguruan, Jurusan

Pendidikan Matematika, UIN Ar-Raniry Banda

Aceh 2013

Banda Aceh, Juni 2018

Vina Yulianda