STUDI VARIASI RASIO MASSA KATALIS MAGNETIT-TiO₂ UNTUK FOTODEGRADASI LIMBAH PESTISIDA

SKRIPSI

Diajukan Oleh:

SITI SARAH NIM. 190702015

Mahasiswa Fakultas Sains dan Teknologi Program Studi Teknik Lingkungan

FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI AR-RANIRY DARUSDALAM-BANDA ACEH 2023 M / 1444 H

LEMBAR PERSETUJUAN

STUDI VARIASI RASIO MASSA KATALIS MAGNETIT-TiO₂ UNTUK FOTODEGRADASI PESTISIDA

TUGAS AKHIR

Diajukan Kepada Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Ar-Raniry Banda Aceh Sebagai Salah Satu Beban Studi Memperoleh Gelar Sarjana (S1) Dalam Ilmu Teknik Lingkungan

Oleh: SITI SARAH NIM. 190702015

Mahasiswa Fakultas Sains dan Teknologi Program Studi Teknik Lingkungan

Banda Aceh, 16 Desember 2023 Telah Diperiksa dan Disetujui oleh:

Pembimbing I,

Pembimbing II,

Sri Nengsih, S.Si., M.Sc. NIP. 198508102014032002 Suardi Nur, S.T, M.Sc, PhD NIP. 198110102006041006

Mengetahui, Ketua Program Studi Teknik Lingkungan

Husnawati Yahya, M.Sc.

NIP. 198311092014032002

LEMBAR PENGESAHAN TUGAS AKHIR

STUDI VARIASI RASIO MASSA KATALIS MAGNETIT-TIO2 UNTUK FOTODEGRADASI LIMBAH PESTISIDA

TUGAS AKHIR

Telah Diuji oleh Panitia Ujian Munaqasyah Tugas Akhir Fakultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry Banda Aceh serta Diterima Sebagai Salah Satu Persyaratan Kelulusan Program Sarjana Teknik (S-1) dalam Ilmu Teknik Lingkungan

Pada Hari/Tanggal: Jumat/ 25- Desember 2023

12 Jumadil Akhir 1445

Panitia Ujian Munqasyah Skripsi

Ketua

Sekretaris

<u>Sri Nengsih, M.Sc.</u> NIP. 198508102014032002

Suardi Nur, S.T., M.Sc, PhD NIP. 198110102006041006

Penguji II

Bhayu Gita Bherhama, M.Si.

NIP. 198901232014032003

Dr. Eng. Nur Aida, M.Si NIP. 197906162005012009

Mengetahui,

Dekan Fakultas Sains dan Teknologi

ANN Ar-Raniry Banda Aceh

Mohammad Dirhamsyah, MT., IPI

NIP. 196210021988111001

LEMBAR PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan di bawah ini: Nama : Siti Sarah NIM : 190702015

Program Studi : Teknik Lingkungan Fakultas : Sains dan Teknologi

Judul Skripsi : Studi Variasi Rasio Massa Katalis Magnetit-TiO2 Untuk Fotodegradasi

Limbah Pestisida

Dengan ini menyatakan bahwa dalam penulisan skripsi ini, saya:

 Tidak menggunakan ide orang lain tanpa mampu mengembangkan dan mempertanggung jawabkan;

2. Tidak melakukan plagiasi terhadap naskah karya orang lain:

- 3. Tidak menggunakan karya orang lain tanpa menyebutkan sumber asli atau tanpa izin pemilik karya:
- 4. Tidak memanipulasi dan memalsukan data
- 5. Mengerjakan sendiri karya ini dan mampu bertangung jawab atas karya ini.

Bila kemudian hari ada tuntutan dari pihak lain atas karya saya, dan telah melalui pembuktian yang dapat dipertanggung jawabkan dan ternyata memang diteukan bukti bahwa saya melanggar pernyatan ini, maka saya siap dikenai sanksi berdasarkan aturan yang berlaku di Falkultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry Banda Acch.

Demikianlah pernyataan ini saya buat dengan seseungguhnya dan tanpa paksaan dari pihak manapun.

Banda Acch, 27 Desember 2023 Yang Menyatakan,

Siti Sarah

0DFAKX68972454

NIM.190702015

CS Spiratal design Conference

ABSTRAK

Nama : Siti Sarah Nim 190702015

Program Studi : Teknik Lingkungan

Judul : Studi Variasi Rasio Massa Magnetit-TiO₂ Fotodegradasi

Limbah Pestisida

Tanggal Sidang : 22 Desember 2023

Jumlah Halaman 1

Pembimbing I : Sri Nengsih, S.Si, M.Sc

Pembimbing II : Suardi Nur, S.T, M.Sc, PhD

Kata Kunci : Fotodegradasi, variasi rasio massa magnetit-TiO₂,

Pestisida Sipermetrin

Pencemaran dari pestisida dapat membuat kerugian pada makhluk hidup dan lingkungan. Adapun tujuan dari penelitian ini ialah mengetahui pengaruh rasio massa magnetit-TiO2 untuk mendegradasi pestisida dan mengetaui laju reaksi terhadap rasio massa fotokatalis magnetiti-TiO2. Pada penelitian ini fotodegradasi dilakukan dengan bantuan kalisator berupa *Titanium Dioksida* (TiO2). Pasir besi yang digunakan diambil dari Pantai Anoi Itam Sabang, Aceh. Metode yang digunakan dalam penelitian ini yaitu metode kopresipitasi. Pada penelitian ini menggunakan variasi rasio massa magnetit-TiO2 yaitu 1:2, 1:1 dan 2:1. Katalis magnetit-TiO2 yang digunakan dengan massa 0,75 gram dengan waktu kontak 30, 60 dan 90 menit serta menggunakan 6 buah lampu UV-A 10 watt. Hasil eksperimen menunjukkan bahwa katalis dengan variasi rasio massa 2:1 paling banyak terdegradasi pada menit ke 90 dengan menggunakan penyinaran UV sebesar 58,46% dengan laju degradasi sebanyak 0,005799. Data hasil analisi menunjukkan bahwa katalis dengan variasi rasio massa magnetit-TiO2 2:1 dengan penyinaran UV lebih efektif dalam menedegradasi pestisida.

ABSTRACT

Name : Siti Sarah

Student ID Number 190702015

Departement : Environmental Engineering

Title : Study of Variations in Magnetite-TiO2 Mass Ratio for

Pesticide Degradation

Date of Session : 22 December 2023

Number of Pages

Advisor I : Sri Nengsih, S.Si, M.Sc

Advisor II : Suardi Nur, S.T, M.Sc, PhD

1

Keywords: Photodegradation, variation of magnetite-TiO2 mass

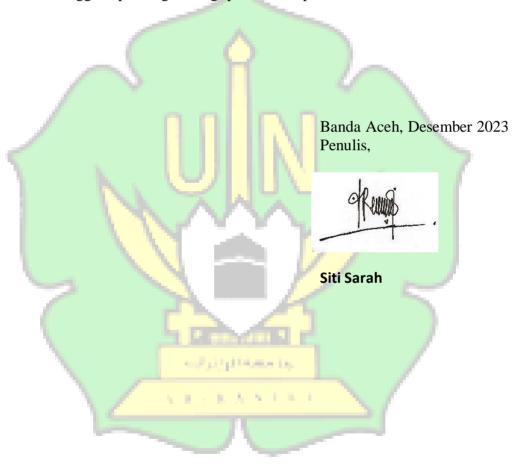
ratio, Cypermethrin pesticide

Pollution from pesticides can cause harm to living things and the environment. The aim of this research is to determine the effect of the magnetite-TiO2 mass ratio for degrading pesticides and to determine the reaction rate on the mass ratio of the magnetite-TiO2 photocatalyst. In this research, photodegradation was carried out with the help of a catalyst in the form of Titanium Dioxide (TiO2). The iron sand used was taken from Anoi Itam Beach, Sabang, Aceh. The method used in this research is the coprecipitation method. In this study, variations in the magnetite-TiO2 mass ratio were used, namely 1:2, 1:1 and 2:1. The magnetite-TiO2¬¬ catalyst used had a mass of 0.75 grams with a contact time of 30, 60 and 90 minutes and used 6 10 watt UV-A lamps. Experimental results show that the catalyst with a mass ratio variation of 2:1 degraded the most at 90 minutes using UV irradiation at 58.46% with a degradation rate of 0.005799. Data from the analysis shows that catalysts with variations in the magnetite-TiO2 mass ratio of 2:1 with UV irradiation are more effective in degrading pesticides.

KATA PENGANTAR

Alhamdulillah segala puji hanya milik Allah Swt. yang telah melimpahkan segala karunia- Nya yang tidak terhingga, khususnya nikmat Iman dan Islam, yang dengan keduanya diperoleh kebahagiaan dunia dan akhirat. Sholawat dan Salam semoga selalu tercurah kepada Baginda Nabi Muhammad saw. dan atas keluarga dan sahabat beliau serta orang-orang yang mengikuti jejak langkah mereka itu hingga akhir zaman. Dengan mengucapkan rasa syukur kepada Allah Swt. yang maha kuasa, penulis dapat menyelesaikan Tugas Akhir dengan judul "Studi Variasi Rasio Massa Katalis Magnetit-TiO₂ Untuk Fotoegradasi Limbah Pestisida".

Skripsi ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik di Prodi Teknik Lingkungan, Fakultas Sains dan Teknologi, Universitas Islam Negeri Ar-Raniry Banda Aceh. Tugas Akhir ini telah penulis susun dengan maksimal yang melibatkan bantuan dari berbagai pihak sehingga dapat memperlancar pembuatan Skirpsi dari awal sampai dengan selesai.


Kemudian, penulis tak lupa mengucapkan terima kasih yang sebesarbesarnya kepada Bapak Ishak dan Ibu Cut Idawati, selaku orang tua yang selalu memberi semangat dan dukungan penuh dengan doa-doanya untuk menyelesaikan proposal ini. Terima kasih Bapak dan juga Bunda atas jasa-jasanya yang tidak bisa dibalas sampai kapanpun

Terimakasih juga sebesar-besarnya penulis ucapkan kepada:

- 1. Ibu Sri Nengsih, S.Si., M.Sc selaku dosen pembimbing pertama yang telah banyak memberikan kritik dan saran untuk penyusunan Skripsi ini.
- 2. Bapak Suardi Nur, S.T, M.Sc, PhD selaku dosen pembimbing kedua yang telah banyak memberikan kritik dan saran untuk penyusunan Skripsi ini.
- 3. Ibu Husnawati Yahya, M.Si selaku ketua Prodi Teknik Lingkungan Fakultas Sains dan Teknologi Universitas Islam Negeri Ar-Raniry Banda Aceh
- 4. Dr. Eng. Nur Aida, M.Si., selaku Dosen Pembimbing Akademik di Program Studi Teknik Lingkungan Fakultas Sains dan Teknologi Universitas Islam Negeri Ar- Raniry.

5. Kepada para sahabat penulis yang tidak bisa disebutkan satu persatu yang telah banyak membantu dan memberi motivasi dalam pengerjaan Skripsi ini. Dan kepada semua pihak yang bersangkutan turut ikut mendukung yang tidak bisa disebut namanya satu persatu.

Penulis menyadari bahwa masih banyak terdapat kekurangan. Maka dari itu, kritik serta saran sangat diharapkan untuk menyempurnakan Skripsi ini sehingga dapat berguna bagi penulis dan pembaca. *Aamiin*.

DAFTAR ISI

LEMB	SAR PERSETUJUAN TUGAS AKHIR	i
LEMB	SAR PENGESAHAN TUGAS AKHIR	ii
LEMB	SAR PERNYATAAN KEASLIAN	. iii
ABTR.	AK	iv
ABSTR	RAC	v
KATA	PENGANTAR	vi
	AR ISI	
DAFT	AR TABEL	X
DAFT	AR GAMBAR	. xii
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Tujuan Masalah	4
1.4	Manfaat Penelitian	4
1.5	Batasan Masalah	
BAB II	I TINJAUAN PUSTKA	6
2.1	Fotokatalis	
2.2	Pasir Besi	
2.3	Titanium Dioksida (TiO ₂)	
2.4	Fotodegradasi	9
2.5	Pestisida Sipermetrin	9
2.6	Penelitian Terdahulu	11
BAB I	II METODE PENELITIAN	13
3.1.	Rancangan Penelitian	13
3.2.		
3.2.1	1. Waktu Penelitian	13
3.2.2	2. Lokasi Penelitian	13
3 3	Bahan dan Peralatan Penelitian	. 14

3.3.1.	Bahan1	4
3.3.2.	Alat1	6
3.4.	Prosedur Penelitian	9
3.4.1.	Proses Preparasi Pasir Besi	9
3.4.2.	Sintesis Pasir Besi Fe ₃ O ₄ 1	9
3.4.3.	Proses Penggabungan Pasir Besi Dengan TiO ₂	20
3.4.4.	Pengujian Katalis	21
3.4.5.	Desain Reaktor Fotokatalis	21
3.4.6.	Proses Fotodegradasi Pestisida Sipermetrin menggunakanFe ₃ O ₄ -TiO ₂ 2	22
3.5.	Analisis Data2	
BAB	IV HASIL DAN PEMBAHASAN2	
4.1	Sintesis Pasir Besi	27
4.2	Proses Penggabungan (Fe ₃ O ₄) dengan TiO ₂	28
4.3	Karakterisasi Magnetit (Fe ₃ O ₄)-TiO ₂ 2	29
4.3.1	Karakterisasi dengan X-Ray Diffraction2	29
4.3.2	Karakterisasi Magnetit dengan Vibrating Sampe Magnetometer3	31
4.3.3	Karakterisasi Magnetit Dengan Scaning Electron Microscope	32
4.4	Penentuan Panjang Gelombang Pestisida Sebelum Degradasi3	34
4.5	Optimasi Waktu Degradasi Pestisida Sipermetrin	35
4.6	Efektivitas Fotodegradasi Dengan Variasi Konsentrasi Magnetit-TiO ₂ 3	37
4.7	Laju Degradasi3	39
BAB	V PENUTUP3	39
5.1	Kesimpulan	39
5.2	Saran	39
DAF'	TAR PUSTAKA4	łO
LAM	PIRAN 14	! 5
LAM	PIRAN 25	52
LAM	PIRAN 3	55

DAFTAR TABEL

Tabel 2.1 Hasil Penelitian Terdahulu	11
Tabel 3.1. Bahan-bahan Dalam Penelitian	14
Tabel 3.2. Alat-alat Dalam Penelitian	16
Tabel 4.1 Data Analisis TiO ₂ , magnetit dan magnetit-TiO	D ₂ 30
Tabel 4.2 Data Sifat magnetit- TiO_2 menggunakan VSM .	32
Tabel 4.3 Hasil Degradasi Pestisida Sipermetrin Dengan	Konsentrasi Magnetit
TiO ₂	38
Tabel 4.4 Laju degradasi pestisida	39

DAFTAR GAMBAR

Gambar 2.1. Skema Fotokatalis	7
Gambar 2.2. Struktur Rutile, Anatase dan Brookite	9
Gambar 2.3. Struktur Senyawa Sipermetrin	10
Gambar 3.1. Lokasi Pengambilan Sampel	13
Gambar 3.2. Lokasi Penelitian	14
Gambar 3.3. Desain Reaktor	21
Gambar 3.4 Diagram Alir Penelitian	24
Gambar 3.5 Diagram Alir Penelitian	25
Gambar 4.1 pasir besi sebelum d <mark>an</mark> sesudah diayak	27
Gambar 4.2 penggabungan pasir <mark>bes</mark> i dan HCl	28
Gambar 4.3 perbandingan magne <mark>tit</mark> -TiO ₂	29
Gambar 4.4 grafik XRD magnetit, TiO ₂ dan magnetit-TiO ₂	30
Gambar 4.5 Hasil Pengujian <i>Vibr<mark>ating Sampel Magnotometer</mark></i>	31
Gambar 4.6 magnetit dengan pembesaran 5000μm	32
Gambar 4.7 Magnetit dengan pembesaran 10.000μm	33
Gambar 4.8 Magnetit-TiO ₂ dengan pembesa <mark>ran 30.0</mark> 00 μm	33
Gambar 4.9 Magnetit-TiO ₂ dengan pembesaran 50.000 μm	34
Gambar 4.10 Grafik Panjang Gelombang Pestisida	
Gambar 4.11 Perbandingan rasio massa magnetit-TiO ₂ 2:1	36
Gambar 4.12 Perband <mark>ingan rasio masa magnet</mark> it-TiO ₂ 1:1	36
Gambar 4.13 Perbandingan rasio massa magnetit-TiO ₂ 1:2	37

BABI

PENDAHULUAN

1.1 Latar Belakang

Negara Indonesia merupakam negara yang memiliki jumlah penduduk hingga mencapai 275,77 juta jiwa. Indonesia juga merupakan negara yang Sebagian penduduknya bekerja di sektor pertanian. Sektor pertanian sendiri memiliki peranan penting dalam meningkatkan perokonomian dan memenuhi pangan. Untuk meningkatkan perekonomian dibutuhkan usaha untuk meingkatkan kualitas hasil produksi pertanian yaitu pestisida. Penggunaan pestisida sendiri menjadi bagian yang tidak bisa terpisahkan dari kegiatan pertanian (Siahaan & Restiaty, 2021).

Penggunaan pestisida merupakan suatu bahan kimia yang digunakan untuk membunuh dan mengendalikan hama (Arif, 2015). Keberadaan senyawa organik yang terkandung dalam air tanah, air pemukaan, dan air sisa limbah pertanian adalah bahan beracun dan berbahaya atau sering disebut limbah B3. Pencemaran dari pestisida dapat membuat kerugian pada makhluk hidup dan lingkungan. (Ivnaini, 2019). Dari hasil wawancara yang telah dilakukan di beberapa toko penjual pestisida seperti di Lambaro, Darussalam, dan Ulee Kareng mayoritas petani menggunakan pestisida sipermetrin untuk membunuh hama pada persawahan. Namun penggunaan pestisida dengan intensitas yang tinggi dan dilakukan secara terus menerus pada setiap musim akan berdampak kepada lingkungan dan kesehatan manusia terlebih terhadap Kesehatan para petani yang sering berkontak langsung dengan pestisida.

Studi terbaru yang diterbitkan dalam jurnal *Public Health*, terdapat 385 juta orang di bidang pertanian jatuh sakit karena keracunan pestisida akut setiap tahun. Para petani melaporkan gejala yang dialami setelah keracunan seperti lemah, sakit kepala, muntah, diare, ruam kulit, gangguan system saraf dan pingsan, dalam beberapa kasus yang parah, jantung, paru-paru atau gagal ginjal. Tercatat 11.000 orang dibidang pertanian meninggal karena keracunan akut setiap tahunnya (Public Health, 2023).

Beberapa penelitian dengan banyak cara telah dilakukan untuk menangani senyawa-senyawa organik yang terkandung dalam pestisida termasuk biodegradasi yang telah diteliti oleh Kurade et al., (2016), secara adsorpsi juga telah diteliti oleh Moussavi et al., (2013), ataupun dengan cara filtrasi membrane dan oksidasi elektrokimia. Namun menurut (Fatimah et al., 2010) untuk menangani senyawa organik yang terkandung dalam pestisida memiliki cara lainnya yang relative murah dan sederhana yaitu dengan menggunakan proses fotokatalisis material semikonduktor.

Penelitian terdahulu tentang degradasi pestisida juga sudah banyak dilakukan seperti yang dilakukan oleh (Khoiriah et al., 2019) dimana hasil dari penelitiannya adalah pestisida dengan jenis diazinon berhasil didegradasikan secara fotokatalisis menggunakan C,N-codoped TiO2 mampu meningkatkan degradasi dari 45,51% menjadi 84,93%. Penelitian juga telah dilakukan oleh (Zilfa et al., 2018) dengan menggunakan TiO₂ untuk mendegradasi pestisida permethrin maka didapatkan hasil bahwa TiO₂/Zeolit dapat digunakan sebagai katalis untuk mendegradasikan sipermetrin. Degradasi sipermetrin tanpa menggunakan katalis adalah 47,33% tetapi setelah ditambah Zeolit dan 0,8mg TiO₂-anatase maka diperoleh degradasi sipermetrin asing-masing sebnyak 62,16% dan 82,77%. Maka dapat disimpulkan bahwa penggunaan TiO₂/Zeolit memiliki pengaruh lebih besar dalam mendegradasi senyawa sipermetrin disbanding dengan TiO₂-anatase dan zeolite. Menurut penelitian yang dilakukan oleh (Safni et al., 2020) senyawa dicofol dalam pestisida dapat didegradasikan sebanyak 86,13% dengan menambahkan TiO₂-anatase. hal ini dapat membuktikan bahwa TiO₂-anatase memiliki pengaruh besar dalam mendegradasikan senyawa dicofol.

Fotokatalisis merupakan suatu reaksi kimia yang melibatkan energi cahaya dan katalis guna mempercepat reaksi tersebut. Fotokatalis yang sering digunakan dalam proses fotokatalisis adalah TiO₂ yang bersifat stabil dan memiliki aktifitas katalis baik. Untuk meningkatkan aktifitas fotokatalis dapat menggunakan karbon aktif. Penambahan karbon aktif dinilai efesien sebagai material penyangga karena memiliki kemampuan adsorpsi yang tinggi untuk

menyerap senyawa diazinon dipermukaannya dan senyawa tersebut dapat didegradasi oleh TiO₂ (Salsabilla et al., 2017).

TiO₂ atau yang lebih sering disebut dengan Titania yang secara alami merupakan oksidasi dari titanium. Titania sendiri memiliki beberapa keunggulan diantaranya: tidak beracun, harga yang relatif murah, memiliki fotokatalis yang baik, dan yang pasti ramah terhadap lingkungan. Dalam proses fotodegradasi, TiO₂ memiliki daya adsorbsi yang rendah sehingga menajadi salah satu kelemahan dari fotokatalis. Oleh karna itu TiO₂ perlu dikombinasikan agar dapat meningkatkan fotokatalitiknya. Salah satu material adsorben yang dapat digunakan adalah pasir besi (Sucahya, 2016).

Pasir besi adalah salah satu sumber daya alam yang banyak ditemui di Indonesia, pasir besi merupakan jenis pasir dengan konsentrasi besi yang signifikan. Pasir besi biasanya berwarna abu-abu gelap atau bewarna sedikit kehitaman. Endapan pasir besi ini biasanya mengandung mineral-mineral seperti magnetic, Fe₃O₄, dan juga mengandung sejumlah kecil Titanium, Silika, mangan dan Kalsium.

Untuk itu pasir besi perlu dilakukan pemurnian agar mendapatkan mineral magnetik Fe₃O₄ yang terdapat dalam pasir besi. Mineral magnetik Fe₃O₄ adalah mineral biji besi umum yang berasal dari metasedimentary dan magnetic menurut Yulianto dkk, (2017) beberapa studi yang telah dilakukan menunjukkan bahwa kandungan mineral magnetik yang dominan dalam pasir besi adalah mineral magnetik (Fe₃O₄). Untuk mendapatkan mineral magnetik ini dapat dilakukan dengan mengesktrak pasir besi dengan menggunakan magnet permanen. Magnet permanen digunakan dalam mengesktra pasir besi dengan maanfaatkan sifat magnetik dari magnet yang terkandung dalam pasir besi sehingga dapat memisahkan mineral magnetik dari pengotor. Penggunaan pasir besi dalam penelitian ini adalah sebagai katalis yang berfungsi untuk meningkatkan efesiensi fotodegradasi menggunakan TiO₂ yang memiliki tingkat efesiensi yang rendah.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah diuraikan diatas, maka dapat dirumuskan permasalahan dalam penelitian ini :

- 1. Bagaimana kemampuan fotokatalis magnetit-TiO₂ dalam degradasi pestisida?
- 2. Bagaimana pengaruh rasio massa magnetit-TiO2 dalam degradasi pestisida?
- 3. Bagaimana laju degradasi pestisida terhadap rasio massa fotokatalis magnetit-TiO₂?

1.3 Tujuan Masalah

- 1. Menentukan kemampuan fotokatalis magnetit-TiO2 dalam degradasi pestisida
- 2. Mengetahui pengaruh rasio massa magnetit-TiO2 dalam kemampuan fotokatalis untuk degradasi pestisida
- 3. Mengetahui laju degradasi pestisida terhadap rasio massa fotokatalis magnetit-TiO₂

1.4 Manfaat Penelitian

Menambah wawasan mengenai fotodegradasi dalam pengolahan limbah industry untuk mendegradasi pestisida yang terdapat di tanah pertanian tanpa membutuhkan waktu yang lama namun bisa mendapatkan hasil yang memuaskan. Hasil dari penelitian ini diharapkan dapat menjadi manfaat dan juga menjadi sumber informasi terbaru tentang fotodegradasi.

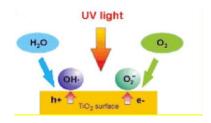
1.5 Batasan Masalah

Adapun Batasan masalah pada penelitian ini adalah:

- 1. Rasio massa magnetit-TiO₂ yang digunakan adalah 2:1, 1:1 dan 1:2
- 2. Variasi konsentrasi pestisida yang digunakan 10 ppm
- 3. Jenis TiO₂ yang digunakan adalah jenis Anatase
- 4. Pasir besi alam yang digunakan berasal dari Pantai Anoi Itam Kota Sabang Provinsi Aceh

- 5. Pengujian XRD akan dilakukan di Laboratorium MIPA Universitas Syiah Kuala
- 6. Pengujian VSM akan dilakukan di Batan Serpong

BAB II


TINJAUAN PUSTAKA

2.1 Fotokatalis

Fotokatalis merupakan suatu kombinasi proses antara proses fotokimia dan katalisis. Dimana yang dimaksud dengan fotokimia adalah suatu proses sintetis atau transformasi secara kimiawi dengan melibatkan cahaya sebagai pemicunya. Sedangkan katalis adalah substansi yang dapat mempercepat laju reaksi tanpa ikut bereaksi secara keseluruhan. Hal ini daapat disebabkan karena katalis memiliki kemampuan untuk mengadakan interaksi dengan minimal satu molekul. Katalis dalam proses ini disebut sebagai fotokatalisis karena memiliki kemampuan dalam menyerap energi foton (Andarini & Sarosa, 2015).

Menurut Said (2021) suatu bahan dapat dijadikan fotokatalis jika memiliki daerah energi kosong yang disebut celah pita energi (energy bandgap). Dari pendapat tersebut dapat disimpulkan bahwa fotokatalitik adalah suatu proses transformasi kimia yang melibatkan unsur cahaya dan katalis sekaligus dalam melangsungkan dan mempercepat proses transformasi yang terjadi. Metode degradasi fotokatalitik memiliki beberapa kelebihan, diantaranya seperti sifat toksik dalam logam berat dapat berkurang, kontaminan organik dapat terdekomposisi secara keseluruhan dengan cepat, dan bersifat soft (Sucahya et al., 2016).

Reakasi fotokatalis dimulai dengan energi foton melewati jumlah energi pada celah electron (e⁻) dari pita valensi ke pita konduksi meninggalkan hole (h⁺). Electron yang terseksitasi berpindah kle permukaan katalis dan mengambil bagian pada reaksi kimia dengan molekul pendonor (D) dan akseptor (A). Sementara lubang elektron dapat mengoksidasi molekuk pendonor (Fitira, 2019). Untuk skema dari proses fotokatalis dapat dilihat pada Gambar 2.1.

Gambar 2.1 skema proses fotokalis

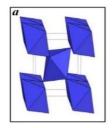
Sumber: Fitria, 2019

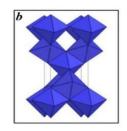
2.2 Pasir Besi

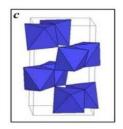
Endapan pasir besi di Indonesia telah dikenal di sepanjang pesisir Sumatra, Jawa, Pulau Sunda Kecil, Sulawesi, dan Nusa Tenggara Timur. Endapan/sedimen pasor besi memiliki ukuran 0.074-0.075 mm dengan ukuran kasar (5-3mm) dan halus (< 1 mm). Pasir besi yang berasal dari pantai maupun sungai ini memiliki kandungan besi oksida *hematite* (Fe₂O₃) dan *magnetite* (Fe₃O₄) serta senyawa yang lain seperti Fe, Zn, dan Ni(Rianto et al., 2018). Kandungan pada pasir besi tersebut juga dapat digunakan di bidang perindustrian sebagai bahan campuran untuk membuat semen agar memiliki kualitas semen yang baik (Togibasa dkk., 2019).

Menurut (Yulianto et al., 2022) pasir besi adalah sejenis pasir yang memiliki konsentrasi besi yang signifikan. Pasir besi biasanya memiliki warna abu-abu gelap atau sedikit kehitaman dan endapannya memiliki mineral-mineral seperti magnetik, hematit, dan juga maghemite. Pasir besi dalam bentuk oksida banyak dikembangkan sebagai bahan pengompleks karena memiliki kemampuan untuk membentuk senyawa-senyawa yang kompleks melalui ikatan kovalen koordinasi. Oksida besi juga merupakan salah satu senyawa yang paling banyak digunakan untuk remediasi air logam berat, limbah dan mangan dioksida (MnO₂) (Suriadi dkk., 2017)

Menurut (Puspitarum et al., 2019) pertikel nano Fe₃O₄ merupakan material nano yang mempunyai sifat magnetit, kimia dan fisis yang baik. Fe₃O₄ pada umumnya telah menempel pada stuktur karbon aktif. Dalam pengaplikasiannya penggunaan bahan nanokomposit magnetit sebagai adsorben dapat mempermudah dan mempersingkat proses pengolahan limbah cair.


2.3 Titanium Dioksida (TiO₂)


Titanium Dioksida atau yang lebih dikenal dengan Titania yang secara alami merupakan oksida dari titanium. Ada banyak keunggulan yang dimiliki oleh TiO₂ seperti memiliki kestabilan yang tinggi, ketahanan terhadap korosi, ketersediaan yang melimpah, dan juga harga yang relative murah. (Agus dkk., 2018). Menurut (Tjahjanto, 2020) ada beberapa factor yang dapat mempengaruhi aktivitas TiO₂ sebagai fotokatalis salah satunya adalah bentuk kristalnya.


Titanium Dioksid (TiO₂) memiliki 3 jenis struktur kristal yaitu *Anatase*, *Rutile*, dan *Brookite*. Namun yang sering digunakan pada reaksi fotokatalis adalah struktur kristal *anatase* dan *rutile*. Menurut (Yani, 2020) secara fotokatalitik, struktur *anatase* menunjukkan aktifitas yang lebih baik dari segi kereaktifan dibandingkan dengan struktur *rutile*. Struktur *anatase* sering digunakan karena memiliki luas permukaan yang lebih besar serta ukuran partikel yang lebih kecil disbanding dengan struktur *rutile*. Selain itu *bandgap* energi *anatase* lebih besar dari *rutile* sehingga *anatase* memiliki aktifitas fotokatalik yang lebih tinggi (Licciuli L, 2017). Rutile sendiri merupakan bentuk kristal yang paling stabil dibanding dengan anatase dan brookite. Oleh karena itu kristal jenis rutile ini lebih sering ditemukan dalam bentuk (biji) yang paling murni.

Secara termodinamika, kestabilan anatase lebih tinggi dibandingkan dengan rutile dan brookite (Rahman, dkk., 2017) ukuran kristal anatase stabil pada ukuran 11 nm, brookite antara 11 dan 35 nm dan rutile 35nm. Rutile stabil pada suhu tinggi dan memiliki energi *bandgap* sebanyak 3,0 eV (415 nm) sedangkan anatase terbentuk pada suhu rendah dan memiliki energi *bandgap* 3,2 eV (380 nm).

Menurut (Greenwood dkk., 2017) *rutile* merupakan bentuk krital yang paling sering dijumpai dan mudah didapatkan alam dan diproduksi dipasaran. *Rutile* sendiri memiliki struktur yang berbentuk octahedral yang ditempati oleh atom titanium. Berbeda dengan *anatse* dan *brookite*, mereka memiliki struktur berbentuk kubik, dan dapat dilihat pada Gambar 2.2

Gambar 2.2 Rutile (a), Anatase (b), Brookite (c)

Sumber: Sucahya, dkk, 2016

Pada penelitian fotokatalis ini menggunakan jenis TiO₂ struktur *anatase*, dikarenakan jenis tersebut dapat bekerja dengan baik di bawah sinar UV untuk mendegradasikan limbah. Hal tersebut terjadi karena *anatase* memiliki luas permukaan lebih besar dibanding dengan struktur rutile dan juga lebih fotoaktif dalam mendegradasikan pencemaran. Sedangkan dengan struktur *brookite* tidak digunakan karena struktur tersebut merupakan struktur yang paling tidak stabil dan paling sulit untuk dipreparasikan sehingga membuat struktur *brookite* jarang digunakan dalam aplikasi.

2.4 Fotodegradasi

Fotodegradasi merupakan metode penguraian senyawa (biasanya senyawa organik) menajadi yang lebih sederhana dengan bantuan foton. Fotodegradasi dapat berlangsung lebih cepat dengan bantuan katalis yang bersifat semikonduktor seperti TiO₂. Fotodegradasi memiliki prinsip yaitu adanya loncatan elektron dari pita valensi ke pita konduksi pada logam semikonduktor jika dikenai energi foton. Dari loncatan ini dapat menimbulkan *hole* (lubang elektron) yang bisa berinteraksi dengan pelarut membentuk radikal (Tampak, 2021).

2.5 Pestisida Sipermetrin

Sipermethrin merupakan golongan insektisida piretroid sintetik yang kurang toksik bagi mamalia namun sangat toksik bagi ikan, serangga dan mikroorganisme air. Berdasarkan hasil wawancara dari beberapa toko pertanian dan beberapa orang petani yang berada di Kawasan Banda Aceh dan Aceh Besar pestisida yang sering dipakai adalah permetrin, karena memiliki harga yang murah dan mudah didapatkan (Hamzar, dkk, 2017).

Siermetrin adalah jenis pestisida yang sering digunakan untuk pembasmi serangga, memiliki sifat yang tidak berbau, dan dapat membasmi serangga apabila sudah berkontak langsung dengan serangga tersebut. Permetrin termasuk jenis pestisida organoklorin yang mempunyai dua diastomer dengan bahan kimia yang berbeda secara fisik maupun toxicological (Chun Lu, 2016). Meurut (Dian et al., 2017) permetrin merupakan golongan organoklorin, golongan ini bersifat stabil dan tidak mudah didegradasikan secara alami. Untuk struktur kimia dari permetrin dapat dilihat pada Gambar 2.3

Menurut penelitian yang telah dilakukan oleh Gracia et al., (2016) pengolahan limbah pestisida permetrin sudah pernah dilakukan secara konvensional yaitu dengan menggunakan karbon aktif, sludge atau lumpur kemudian dibakar, akan, tetapi hal tersebut kurang efektif karena struktur senyawa dalam limbah mengandung beberapa buah cincin benzene. Oleh karena itu pembakaran sludge mengakibatkan terbentuknya senyawa klorooksida dan monoksida.

Adapaun alternatif lain untuk menanggulangi pencemaran limbah pestisida jenis sipermetrin ini telah dilakukan penelitian oleh Safni *et al.*,(2015) dengan cara mendegradasikannya secara sonolisis dan ternyata dapat mencapai 70%. Metode lain yang lebih efektif juga dapat dilakukan dengan cara metode fotolisis. Dimana fotolisis adalah bagian dari proses oksidasi lanjutan (AOPS;

Advanced Oxydation Process) dan dibantu dengan adanya cahaya dan material katalis. (Chun Le., 2021).

2.6 Penelitian terdahulu

Beberapa studi mengenai penelitian fotodegradasi limbah pestisida sintesis magnetit-TiO2 sebagai berikut:

Tabel 2.1 hasil penelitian terdahulu

No	Penulis	Fotokatalisis	Sinar	Limbah	Kemampuan
			Cahaya		degradasi
1	Khoiriah	C,N-	Sinar	Limbah	Pestisida berhasil
	dkk., 2019	CODOPED	matahari	pestisida	didegradasikan secara
		TiO ₂		diazenon	fotokatalisis
			\wedge		termodifikasi C,N-
	1	1	H	1/	CODOPED TiO ₂
		Ψ.		_ ~	meningkatrkan persen
		0.0	ni ir	VI.	degradasi dari 45,51%
	<	.		N.	menjadi 84,93%.
2	Sulfi	Zeolite-TiO ₂	Lampu	Pestisida	Mampu meningkatkan
	Adam,	1 M Z	UV	sipermetrin	aktifitas fotokatalis
	dkk, 2018	111		7//	Zeolite-TiO ₂ hingga
		11		V /	12,25% pada reaksi
	7	1		1	degradasi pestisidas
3	Suyani,	TiO ₂ Anatase	Lampu	Pestisida	Mampu mendegradasikan
	2020	71.14	UV	diazenon	senyawa diazinon
	1		Night state (sebanyak 85,59%.
4	Desnelli,	KITIN- TiO ₂	Sinar -	Pestisida	Fotodegradasi pestisida
	2020		matahari	diazenon	diazinon dengan irradiasi
				-	menggunakan sinar
					matahari memiliki waktu
					kontak optimum selama
					180 menit. Fotokatalis
					komposit kitin-TiO ₂
					mampu
					menurunkankonsentrasi

					pestisida diazinon sebesar
					93,42 %.
5	Febrina,	N-doped TiO ₂	Sinar Uv	Pestisida	Hasil penelitian
	2018		dan	gramoxone	menunjukkan degradasi
			Sinar		melalui proses fotolisis
			Tampak		sinar UV selama 120
					menit diperoleh
					persentase degradasi
					16% dan dengan
			Α.		penambahan katalis 25
				-	mg N-doped TiO ₂
			\wedge		dengan waktu fotolisis
		1	H	1/	yang sama persentase
		9		~	degradasi meningkat
		0.0		kΠ.	menjadi 58%.
	1		11 11 11 1	N	Sedangkan untuk
	1	K. (U	/I III	V .	degradasi melalui
		111 7		$\sim N$	proses penyinaran
		1111	7	7//	cahaya matahari
		11		1//	dengan konsentrasi dan
	, ~ 3				penambahan katalis
			_	7	yang sama memberikan
	\	20.00			persentase degradasi
	1		المستحالين	4	yang lebih besar yaitu
	,	1	8. 3. 5.1		80% setelah penyinaran
			74		120 menit.
Ь	1				I .

BAB III

METODE PENELITIAN

3.1. Rancangan Penelitian

Pada peneliti kali ini menggunakan pendekatan kuantitatif dengan metode eksperimen yang dilakukan langsung di Labroratorium Multifungsi UIN Ar-Raniry. Sampel penelitian diperoleh dari pasir besi yang diambil langsung dari Pantai Anoi Itam Sabang dan diolah sampai menjadi magnetit dan kemudian dicampur dengan TiO₂ sebagai katalis dan selanjut dilakukan uji degradasi.

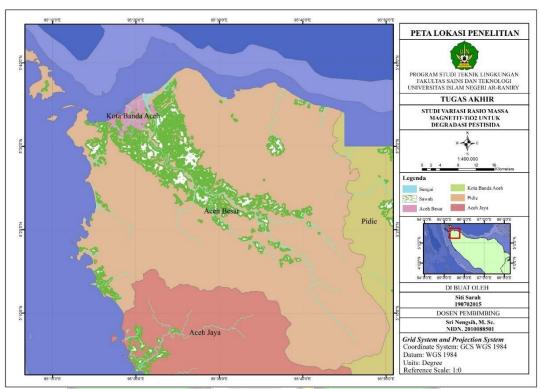
Adapun rancangan dari penelitian ini dimulai dari mengidentifikasi masalah yang akan diteliti lalu melalukan studi literatur guna mengetahui kajian terdahulu dan menjadikannya sebagai sumber referensi. Dilanjut dengan melakukan observasi awal agar mengetahui kondisi sampel, selanjutanya melakukan preparasi dan sintetis mangent besi, disni pasir besi diolah menjadi magnetit dan dicampur dengan TiO2 sebagai katalis. Kemudian menentukan XRD dan VSM terhadap sampel. Lalu melakukan penelitian dan uji sampel di labroratorium UIN Ar-Raniry. Degradasi limbah pestisida dengan proses fotokatalis magnetit-TiO2 dengan menggunakan beberapa variasi dari konsentrasi limbah pestisida. Terakhir dilakukan analisis data guna untuk menganalisis data yang diperoleh selama penelitian dan mendapati hasil dan kesimpulan untuk menjawab rumusan masalah dalam penelitian ini.

3.2. Waktu dan Lokasi Penelitian

3.2.1. Waktu Penelitian

Penelitian ini dilakukan dengan waktu perkiraan berlangsung kurang lebih selama 2 bulan dari Oktober sampai November. Dimulai dengan proses pengambilan sampel dan perlakuan pada sampel di Laboratorium hingga menghasilkan kesimpulan dan analisis data.

3.2.2. Loksi Penelitian


a. Lokasi Pengambilan Sampel

Sampel pasir besi (Fe₃O₄) yang akan digunakan dalam proses fotokatalis sebagai katalis yang akan digabungkan dengan TiO₂ berasal dari Pantai Anoi

Itam Kota Sabang Provinsi Aceh. Untuk sampel dari pestisida Sipermetrin di beli pada toko yang terletak di daerah Lambaro, Aceh Besar

b. Lokasi Penelitian

Penelitian sintesis dan degradasi sampel pestisida sipermetrin dilakukan di Laboratorium Multifungsi Universitas Islam Negeri Ar-Raniry Jl. Lingkar Kampus, Rukoh, Kecamatan Syiah Kuala, Banda Aceh.

Gambar 3.1 Lokasi Pengambilan Sampel

Sumber: Dokumentasi Pribadi

3.3. Bahan dan Peralatan Penelitian

3.3.1 Bahan

Bahan yang digunakan dalam penelitian ini terdapat pada table 3.1 sebagai berikut:

Tabel 3.2 Bahan-bahan dalam Penelitian

No	Nama	Gambar	K	egunaa	n
1	TiO ₂		Katalis	untuk	proses
			Fotokata	alisis	

2	Aquades		Pembersih alat-alat dari
			pengotor
3	Pestisida		Limbah yang akan
		IDATRIN MARKET STATE OF THE PARKET STATE OF TH	diteliti
4	Etanol 33%		Pelarut dalam
		EMSURE® ACS.ISO.Roag. Ph Eur Ethanol Solute for analysis Elanol Ethanolo	pencampuran magnetit-TiO ₂
5	NH ₄ OH	1	Larutan pengendap
		Ammonia Heliota National Laster Volume of the Volume of the	magnetit
6	Pasir Besi	NA CONTRACTOR OF THE PARTY OF T	Perekat sampel limbah
7	HCL 37%		Pelarut pasir besi
		-	

3.3.2 Alat

Alat yang digunakan pada penelitian ini terdapat pada table 3.2 sebagai berikut:

Tabel 3.2 Alat-alat dalam Penelitian

No	Nama	Gambar	Kegunaan
1	Baker glass	1000	Wadah atau media untuk penempatan larutan dan samel
2	Kertas saring	Whatman Whatman	Menyaring larutan
3	Neraca analitik	COUNT COUNT COUNTY COUN	Menimbang sampel
4	Oven		Pengeringan sampel

		GP-458C	
5	Spektrofotometer UV-		Pengukur
	Vis	Social Control of the	adsorben suatu sampel
6	XRD (X-ray	_	Menentukan
	diffraction)	MATERIA NO.	struktur kristal dan
		Allow A	nano partikel
7	Centrifuge	A ATA AL	Pemisahan
		1	supernatant dari solid pada tiap
			interval Analisa
	\ .	A STATE OF THE STA	sebelum diukur
	\		absorbennya
		COLUMN TO	menggunakan
			spektrofotometer
			UV-Vis
8	Ayakan	8	Menyaring dan
			memisahkan pasir
			besi berdasarkan
			ukurannya

9	Lumpang/alu	Penghalus zat
		kimia yang padat
10	Lampu UV	Penyinaran UV
11	SEM (Scanning Electron Microscope)	Untuk menentukan komposisi dari nanopartikel
12	VSM (vibrating Sampel Magnotometer)	Mengetahui sifat magnetic fotokatalis
13	Magnet Batang	Untuk memisahkan pasir besi dari kontaminan yang ada
14	pH Meter	Mengukur asam dan basa larutan
15	Pipet Tetes	Untuk proses titrasi larutan

16	Magnetic bar	17th	Pengadukan sampel larutan
17	Hotplate		Untuk memanaskan dan menghomogenkan latrutan
18	Shaker	60 269	Pencampuran larutan

3.4. Prosedur Penelitian

3.4.1. Proses Preparasi Pasir Besi

Proses preparasi (pasir besi) dilakukan agar pasir besi dapat terpisah dari pengotor dan mendapat ukuran yang halus agar memudahkan dalam proses sintesis.

Dalam preparasi menggunakan metode kopresipitasi yaitu dengan memisahkan pasir besi dari pengotor menggunakan media magnet batang sebagai pemisahnya. Selanjutnya hasil dari pemisahan tersebut diayak dengan menggunakan ayakan 100 mesh agar mendapatkan ukuran yang relatif sama.

3.4.2. Sintesis Pasir Besi

➤ Pada proses sintetis basir besi dengan memasukkan 20 gr pasir besi kedalam *Beaker glass* kemudian dicampur dengan 50 ml HCL 33%, lalu diaduk menggunakan kecepatan 800 rpm dan kemudian dipanaskan dengan suhu 80°C selama 30 menit.

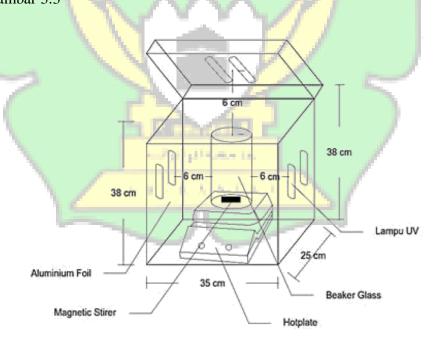
- Setelah dipanaskan selanjutnya pasir besi didinginkan dan disaring dengan menggunakan kertas saring.
- Larutan pasir besi hasil saringan dicampurkan dengan 6,5 ml NH₄OH (*Ammonia*) dengan menggunakan rasio sebesar 1:5 secara titrasi dan kemudian diaduk dengan kecepatan 800 rpm dan dipanaskan dengan suhu 80°C selama 30 menit.
- Larutan hasil dari metode kopresipitasi dicuci dengan menggunakan aquades untuk menghilangkan basa sampai mencapai pH netral kemudian endapan tersebut dikeringkan menggunakan oven dengan temperatur suhu 100°C selama 1 jam sampai kering.
- Setelah kering dan menjadi serbuk, dilanjut dengan menghaluskan serbuk tersebut menggunakan lumpang dan diayak dengan ayakan 200 mesh.
- Serbuk Fe₃O₄ yang dihasilkan disimpan dalam botol berukuran kecil dan ditutup untuk selanjutnya dilakukan karakterisasi.

Untuk uji karakterisasi menggunakan XRD guna mengetahui struktur nanopartikel, untuk mengetahui komposisi partikel dilakukan uji Mikroskop Optik dan VSM untuk mengetahui sifat dari magnetit fotokatalisnya.

3.4.3. Proses penggabungan magnetit (Fe₃O₄) dengan TiO₂

Setelah proses sintesis pasir besi dilaukan, maka Langkah selanjutnya adalah penggabungan Fe₃O₄ dan TiO₂.

- Variasi konsentrasi magnetit-TiO₂ yang digunakan dalam penggabungan memiliki rasio perbandingan berat per beratnya 2:1, 1:1, dan 1:2. Pada setiap perbanadingan tersebut akan dilakukan pelarutan dengan menggunakan etanol 33% kemudian larutan tersebut akan diaduk dengan menggunakan *shaker* dengan kecepatan 130 rpm selama 30 menit.
- Setelah selesai diaduk, larutan penggabungan ini di saring dengan menggunakan kertas saring lalu dikeringkan dengan menggunakan oven selama 1 jam. Hasil dari penggabungan kemudian dihaluskan dengan menggunakan lumpang dan kemudian diayak dengan menggunakan ayakan berukuran 200 mesh.
- Terakhir, endapan yang diperoleh diberikan perlakuan kalsinasi pada suhu 500°C selama 120 menit.


3.4.4. Pengujian katalis

Hasil sintesis yang didapat pada proses sebelumnya, selanjutnya akan dilakukan uji XRD, SEM-EDX, dan VSM.

- Pengujian XRD dilakukan di Laboratorium MIPA Universitas Syiah Kuala. Tujuan dari pengujian XRD untuk mengidentifikasikan danmenentukan struktur fasa nanopartikel pada katalis.
- Selanjutnya komposisi nano partikel dianalisis dengan uji SEM. Analisis ini dilakukan di Laboratorium Politeknik Lhokseumawe.
- Dan terakhir di uji dengan pengujian VSM untuk mengetahui sifat magnetit fotokatalisnya.sampel akan dilakukan pengujian di Badan Tenaga Nuklir Nasional (BATAN) Serpong, Tanggerang Selatan, Banten.

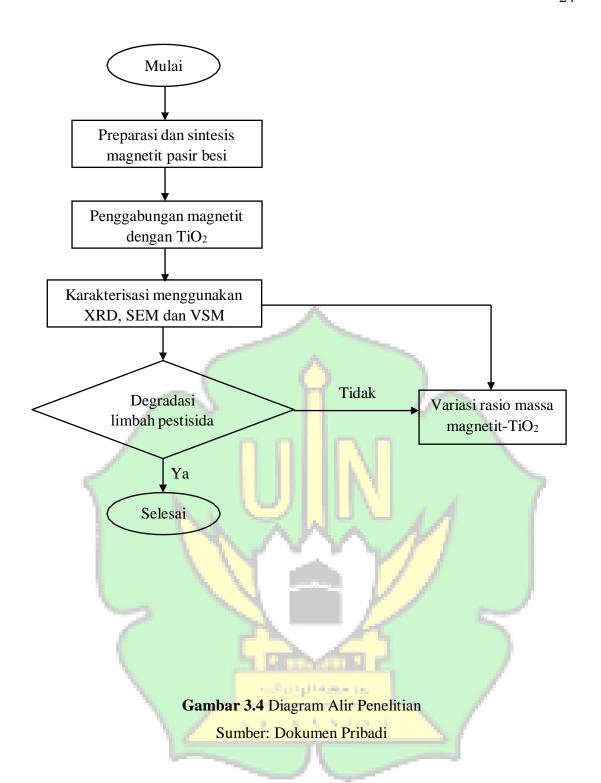
3.4.5. Desain reaktor fotokatalisis

Pada penelitian ini, proses fotokatalis dilakukan dalam reaktor yang tertutup yang didesain dengan ukuran panjang 35 cm, tinggi 38 cm dan lebar 25 cm. Dimana dalam reactor ini terdapat lampu UV masing-masing 10 watt, 2 disisi kiri, 2 disisi kanan dan 2 pada bagian atas kotak (penutup), dengan jarak antara lampu dengan limbah adalah 6 cm. Untuk desain dari reaktor terdapat pada Gambar 3.3

Gambar 3.3 Desain Reaktor Sumber: Dokumen Pribadi

Dalam reaktor *batch* ini energi yang dihasilkan dapat mengaktifkan *Titanium dioksida* sehingga dapat bekerja dalam proses fotokatalisis. Kecepatan pengadukan sebesar 800 rpm. Selain itu, dinding reaktor dilapisi dengan aluminium foil sebagai reflektor yang membuat cahaya memantul kearah limbah pestisida. *Beaker glass* 1000 mL dijadikan sebagai wadah untuk pestisida yang diaduk dengan *Shaker*. Kemudian ketalis TiO₂ dapat bekerja dalam proses fotokatalis pada suhu kamar dengan bantuan sinar UV sambil diaduk.

3.4.6. Proses fotodegradasi pestisida sipermetrin menggunakan Fe3O4-TiO2


Analisa degradasi limbah pestisida sebelum atau sesudah perlakuan pada sampel guna mengetahui perubahan yang terjadi di setiap sampel dengan menggunakan spektrofotometer Uv-Vis.

- Proses ini diawali dengan disiapkan 3 beaker glass yang diisi dengan konsentrasi 10 ppm larutan pestisida sipermetrin, dimana tiap-tiap beaker glass diisi katalis sejumlah Fe₃O₄-TiO₂ dengan rasio 2:1, 1:1, dan 1:2.
- Selanjutnya *beaker glass* dimasukkan kedalam tabung reaktor tanpa penyinaran dan diaduk dengan kecepatan 400rpm selama 30 menit untuk melihat apakah ada terjadi perubahan terhadap sampel pada waktu 0, 30, 60, dan 90 menit.
- Selanjutnya beaker glass dimasukkan kedalam kotak reaktor yang akan diradiasi menggunakan sinar UV pada waktu 30, 60, dan 90 menit selama proses penyinaran dengan sinar UV larutan diaduk dengan dengan menggunakan magnetit stirrer.
- Selanjutnya limbah diambil sebanyak 20ml dari masing-masing beaker glass untuk dilakukan disentrifugasi dengan kecepatan 4000 rpm selama 5 menit.
- Hasil dari endapan masing-masing *beaker glass* diukur absorbansinya dengan menggunakan spektrofotometer Uv-Vis dengan panjang gelombang maksimum dari larutan pestisida sampai memperoleh konsentrasi pestisida.


Selanjutnya fotodegradasi pestisida sipermetrin dengan katalis Fe₃O₄-TiO₂ dan sinar UV-Vis dapat ditentukan dengan presentase dari proses fotodegradasi.

Berdasarkan prosedur penelitian tersebut, berikut adalah prosedur penelitan dalam bentuk diagram alir terdapat pada Gambar 3.4

Adapun diagram alir pada penelitian ini terdapat pada Gambar 3.5 berikut.

Sumber: Dokumen Pribadi

والمعملا الوازرات

3.5. Analisis Data

Untuk ukuran kristal dari hasil pengujian XRD dapat ditentukan dengan menggunakan ketetapan Debye-Scherrer pada persamaan 3.1

$$D = \frac{K\lambda}{\beta \cos \theta}$$
 3.1

Keterangan:

D = ukuran kristal katalis Fe₃O₄-TiO₂

 λ = Panjang gelombang radiasi

K = konstanta(0,9)

 θ = sudut puncak dalam satuan derajat

 β = luas lebar setengah puncak dalam suatu radian

Proses selanjutnya dilakukan dengan menggunakan alat VSM, dimana alat ini nantinya akan menghasilkan informasi mengenai besaran-besaran sifat magnetit sebagai akibat dari perubahan medan magnet yang digambarkan dalam bentuk kurva histerisis. Alat ini juga mengukur sifat magnetit bahan yang diakibatkan oleh perubahan suhu.

Hasil dari presentase degradasi limbah pestisida sipermetrin oleh Fe₃O₄-TiO₂ dihitung dengan menggunakan persamaan 3.2 dengan rumus sebagai berikut:

$$\%D = \frac{|co - ct|}{|co|} \times 100\% \dots 3.2$$

Keterangan:

%D = Persen degradasi

Co = Konsentrasi awal

Ct = Konsentrasi setelah penyinaran

Untuk mengukur laju degradasi dari pestisida terhadap rasio massa fotokatalis magnetit-TiO₂ digunakan persamaan 3.3 dengan rumus sebagai berikut:

$$V = \frac{\Delta A}{\Delta t}$$
 3.3

Keterangan:

V = laju degradasi limbah pestisida

 $\Delta A = A_0 - A_t \hspace{1cm} = Selisih \ nilai \ absorbansi$

 $\Delta t = t_t - t_0$ = Selisih waktu degradasi

BAB IV

HASIL DAN PEMBAHASAN

Pada penelitian ini dilakukan proses degradasi pestisida sipermetrin secara fotokatalitik dengan mengunakan pasir besi yang telah disintesis menjadi serbuk magnetit dan juga TiO₂ serta menggunakan lampu UV 10 Watt sebagai sumber radiasi. Pada penelitian ini juga dilakukan variasi pada konsentrasi magnetit-TiO₂ yaitu 1:2, 2:1 dan 1:1 yang sesuai dengan baku mutu pestisida yaitu 0,10 mg/l yang terdapat pada Peraturan Mentri Perindustrian Republik Indonesia Nomor 78/M/-IND/PER/11/2016 Tentang Pemberlakuan Standar Nasional Indonesia Air Mineral, Air Demineral, Air Mineral Alami dan Air Minum Embun Secara Wajib.

4.1 Sintesis Pasir Besi

Sebelum proses degradasi magnetit-TiO₂ dilakukan terhadap pestisida sipermetrin, hal yang perlu dilakukan adalah mensintesis pasir besi. Dimana preparasi pasir besi yang berasal dari alam memiliki beberapa tahapan yang meliputi berbagai proses yang dimulai dengan memisahkan pasir besi dan bahan pengotor dengan menggunakan media magnet batang sebagai pemisahnya, setelah mendapatkan pasir besi yang bebas dari bahan pengotor selanjutnya pasir besi di ayak dengan menggunakan ayakan 200 mesh untuk mendapatkan ukuran yang relatif sama. Dapat dilihat pada Gambar 4.1 berikut

Gambar 4.1 pasir besi sebelum dan sesudah diayak

Sumber: Dokumentasi Pribadi

Dimana dari gambar tersebut dapat kita lihat bahwa pasir besi yang belum dilakukan preparasi dan sintesis (kiri) masih memiliki tekstur yang kasar karena masih bercampur dengan pasir yang lain dan juga berwarna abu-abu cerah, sedangkan untuk pasir besi yang sudah preparasi dan disentesis (kanan) memiliki tekstur yang cenderung lebih halus dan berwarna hitam pekat.

Proses selanjutnya yaitu serbuk besi dicampur dengan 50 ml HCL 37% dan diaduk dengan kecepatan 800 rpm, selanjutnya serbuk besi disaring menggunakan kertas saring. Hasil saringan kemudian dicampur dengan 6,5 ml NH₄OH (*Ammonia*) dengan perbandinga 1:5 dan diaduk dengan magnetit stirrer dengan kecepatan 800 rpm, dipanaskan dengan temperature 80°C dengan waktu 30 menit. Kemudian hasil saringan dicuci dengan akuades sampai mencapai pH netral lalu dikeringkan menggunakan oven pada suhu 100°C selama 60 menit. Setelah dikeringkan dan menjadi serbuk selanjutnya di haluskan menggunakan lumpang dan diayak dengan ayakan berukuran 200 mesh. Adapun untuk hasil dari penggabungan pasir besi dapat dilihat pada Gambar 4.2 berikut

Gambar 4.2 penggabungan pasir besi dan HCl
Sumber: Dokumentasi Pribadi

Dari gambar diatas dapat dilihat bahwa hasil dari penggabungan pasir besi dan HCL setelah dilakukan eksperimen memiliki tekstur yang lebih halus dan berwarna hitam pekat

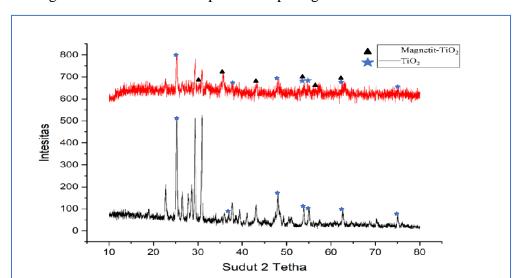
4.2 Proses Penggabungan (Fe₃O₄) dengan TiO₂

Pada proses ini dilakukan penggabungan antara Fe₃O₄ dan TiO₂. Variasi Variasi konsentrasi magnetit-TiO₂ yang digunakan dalam penggabungan

memiliki rasio perbandingan massa per massa nya 1:2, 1:1, dan 2:1. Dimana pada setiap perbandingan tersebut akan dilakukan pelarutan dengan etanol 33% dan diaduk menggunakan shaker dengan kecepatan 130 rpm selama 30 menit.

Kemudian larutan penggabungan ini disaring menggunakan kertas saring dan dikeringkan dengan menggunakan oven selama 1 jam. Kemudia dihaluskan dengan menggunakan lumpang dan diayak menggunakan ayakan berukuran 200 mesh, dan terakhir endapan yang didapat diberi perlakuan kalsinasi pada suhu 500°C selama 120 menit. Untuk detail setiap penggabungan dapat dilihat pada Gambar 4.3 berikut. Dimana pada penggabungan magnetit-TiO₂ dengan rasio 1:1 (kiri) berwarna coklat muda penggabungan magnetit-TiO₂ dengan rasio 1:2 (tengah) berwarna sedikit lebih cerah dan yang terakhir penggabungan magnetit-TiO₂ dengan rasio 2:1 (kanan) berwarna lebih gelap dari yang lainnya.

Gambar 4.3 perbandingan magnetit-TiO₂


Sumber: Dokumentasi Pribadi

4.3 Karakterisasi Magnetit (Fe₃O₄) -TiO₂

Untuk mengetahui struktur dan gugus fungsi penyusun maka magnetit dan katalis TiO₂ perlu dilakukan karakterisasi menggunakan *X-Ray Diffraction* (XRD), *Vibrating Sampel Magnetometer* (VSM) dan *Scanning Electron Microscope* (SEM).

4.3.1 Karakterisasi dengan X-Ray Diffraction (XRD)

Difraksi sinar X atau X-ray diffraction (XRD) adalah suatu metode analisa yang digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel. Analisis kristal menggunakan difraktometer sinar-X yang dilengkapi dengan pencacah radiasi untuk mencatat sudut dan intensitas difraksi (Munawir

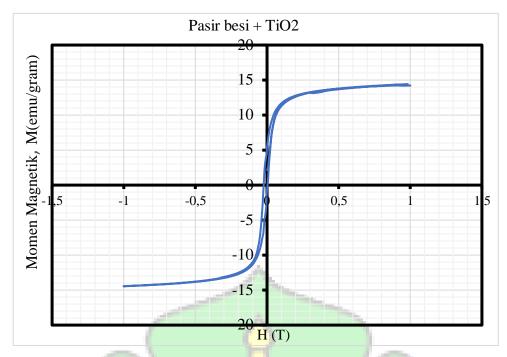
dkk., 2017). Berikut adalah hasil yang didapatkan setelah uji XRD dari Magnetit dan Magnetit-TiO₂ dilakukan dapat dilihat pada gambar 4.4 berikut.

Gambar 4.4 grafik XRD magnetit, TiO₂ dan magnetit-TiO₂

Dari grafik XRD diatas dapat dilihat ada beberapa titik puncak yang terdapat pada sudut 2θ = 25,22° dengan ukuran kristal 26,54306nm. Dari hasil grafik ditas maka dapat kita ketahui bahwa karakterisasi kristal TiO₂ yang digunakan dalam penelitian ini adalah TiO₂ dengan jenis *Anatase*. Karakterisasi X-Ray Diffraction (XRD) juga dilakukan untuk mengetahui informasi dari struktur kristal yang terbentuk dari pencampuran magnetit-TiO₂. Sedangkan dari pola XRD Magnetit-TiO₂ terdaoat beberapa titik puncak tertinggi. Titik puncak tertinggi terdapat pada daerah 2θ = 43,2106° dengan ukuran kristal 29,9496nm. Dan data tertinggi TiO₂ pada daerah 2θ = 25,2266 dengan ukuran kristal 26,543nm.

Berdasarkan data XRD Fe₃O₄-TiO₂ dilakukan analisis yang merujuk kepada data standar JCPDS No. 00-21-1272 untuk TiO₂ anatase dan 00-019-0629 untuk Fe₃O₄ maka dapat dibuat analisis data sebagai berikut:

Sampel	Sudut	Sudutt	d (A)	d(A)	I	FWHM	Ukuran
	2θ	2θ	ref	sampel	sampel	(derajat)	Kristal (nm)
	ref	sampel					
Titanium	25,24	25,2266	3,52	3,5275	100	0,30670	26,5430
Dioksida	37,77	37,7375	2,37	2,3818	20	0,28500	29,4577
(TiO_2)	48,02	48,0400	1,89	1,8923	32	0,24000	36,2394
	53.99	53,9375	1.69	1.6985	21	0.28500	31,2758


Tabel 4.1 Data analisisTiO₂, magnetit dan magnetit TiO₂

	54,98	54,6950	1,66	1,6768	15	0,21000	42,5899
	62,65	62,5700	1,48	1,4833	19	0,24400	38,0982
	75,02	75,1545	1,36	1,2631	17	0,21900	45,7714
Magnetit	30,05	30,3025	2,97	2,9471	18	0,24500	33,5934
	35,42	35,6650	2,53	2,5153	53	0,41000	20,3542
	43,05	43,2106	2,10	2,0920	29	0,28530	29,9495
	53,40	53,2183	1,71	1,7198	12	1,7670	0,0005
	56,94	56,4900	1,62	1,6277	16	0,30000	30,0601
	62,52	62,5700	1,48	1,4833	19	0,24400	38,0982
TiO_2	25,24	25,2238	3,520	3,5278	93	0,2904	28,0327
Anatase	37,77	37,7171	2,3780	2,3831	18	0,2743	30,6049
	48,02	48,4600	1,8920	1,8769	10	0,3800	22,9256
	53,99	53,8186	1,6999	1,7020	18	0,2507	35,5361
	54,98	54,9795	1,6665	1,6688	15	0,2710	33,0458
	62,65	62,6209	1,4808	1,4822	14	0,3047	30,5168
	75,02	75,0043	1,3641	1,2652	11	0,2886	34,6980

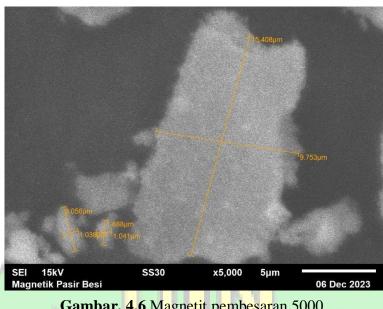
4.3.2 Karakterisasi Magnetit Dengan Vibrating Sampel Magnetometer (VSM)

Vibrating Sample Magnetometer (VSM) merupakan salah satu jenis peralatan yang digunakan untuk mengetahui dan mempelajari sifat magnetik bahan. Karakterisasi dengan VSM menghasilkan informasi mengenai besaran-besaran sifat magnetik sebagai akibat perubahan medan magnet luar yang digambarkan dalam kurva histerisis (Sylvina, 2019).

Kurva histeris ini dapat menunjukkan hubungan antara magnetis (M) dengan magnet luar (H). Pengujian ini dilakukan di Laboratorium Radiasi Serpong, Kawasan Nuklir Serpong, KST BJ Habibie, Puspitek Serpong, Tanggerang Selatan. Kurva histeresis dapat dilihat pada Gambar 4.5 berikut.

Gambar 4.5 Hasil Pengujian Vibrating Sampel Magnetometer (VSM)

Tabel 4.2 Data sifat magnetit-TiO₂ menggunakan VSM

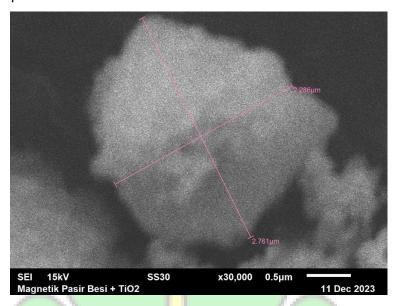

Sampel	- UII	Variabel Variabel	, 7	
	Ms (emu/g)	Mr (emu/g)	Нс (Т)	
Magnetit-TiO ₂	14,22	5,79	0,218	

Dari Analisa ini akan diperoleh besaran-besaran sifat magnetit seperti magnetisasi saturasi (Ms), magnetisasi ramenan (M_R), dan medan koersivitas (H_C). dimana dapat dilihat dari nilai medan koersivitas (H_C) pada data diatas magnetit yang didapat termasuk kedalam magnetit yang lunak atau superparamagnetit. Dimana sifat supermagnetiti ini merupakan sifat material yang memiliki manetisasi tinggi ketika diberi medan magnete eksternal, namun ketika tidak ada medan magnet ekstrenal nilai magnetisasi rata-ratanya adalah nol (Eko, dkk 2018).


4.3.3 Karakterisasi Magnetit Dengan Scanning Electron Microscope (SEM)

Scanning Electron Microscopy (SEM) merupakan mikroskop yang menggunakan elektron sebagai pengganti cahaya untuk melihat benda dengan

resolusi yang tinggi untuk mendapatkan gambar dari spesimen padat (Niken, 2019). Karakterisasi magnetit dengan Scanning Electron Microscope (SEM) dilakukan dengan tujuan melihat struktur morfologi permukaan dari sampel magnetit dan magnetit-TiO₂. Berikut adalah hasil karakterisasi menggunakan Scanning Electron Microscope (SEM).


Gambar. 4.6 Magnetit pembesaran 5000

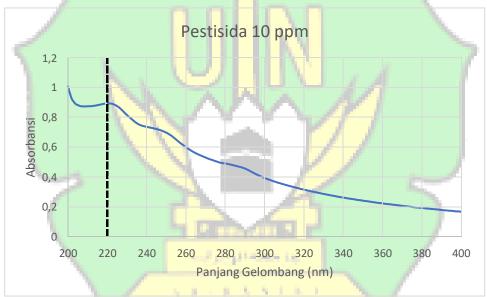
Gambar 4.7. magnetit pembesaran 10.000

Gambar diatas merupakan hasil dari karakterisasi Scanning Electron Microscopy (SEM). Dimana hasil yang diperoleh dari Gambar 4.6 ukuran dari magnetit pasir besi dengan menggunakan pembesaran 5000 memiliki ukuran Panjang 15,498 μm dan lebar 9,753 μm. Sedangkan pada Gambar 4.7 yang

menggunakan pembesaran 10.000 memiliki ukuran Panjang 7,461 μm dan lebar 4,654 μm .

Gambar 4.8 Magnetit-TiO₂ pembesaran 30.000

Gambar 4.9 Magnetit-TiO₂ pembesaran 50.000


Dari gambar diatas merupakan hasil dari karakterisasi *Scanning Electron Microscopy* (SEM). Dapat dilihat pada Gambar 4.8 karakterisasi magnetiti- TiO_2 dengan pembesaran 30.000 memiliki ukuran Panjang 2,761 μm dan lebar 2,286 μm . Sedangkan pada Gambar 4.9 karakterisasi magnetit- TiO_2 dengan pembesaran 50.000 memiliki ukuran Panjang 1,466 μm dan lebar 1,025 μm .

Dari gambar hasil pengujian SEM didapatkan hasil yang tidak beraturan (heterogen) seperti yang terdapat pada gambar-gambar diatas. Hal tersebut

diakibatkan terjadinya aglomerasi pada magnetit dan magnetit-TiO₂, dimana aglomerasi ini terjadi karena adanya kontak dengan udara yang menyebabkan terjadinya pergumpalan. Pergumpalan yang terjadipun memiliki variasi yang berbeda, namun sudah berhasil menurunkan ukuran pasir besi menjadi magnetit walaupun masih dalam skala mikrometer dan belum mencapai nanometer.

4.4 Penentuan Panjang Gelombang Pestidsida Sebelum Degradasi

Panjang gelombang maksimum (λ max) merupakan panjang gelombang yang mempunyai absorbansi maksimum. Nilai panjang gelombang maksimum ditentukan dari pengukuran larutan pestisida dengan menggunakan spektrofotometer UV-Vis. Pengukuran panjang gelombang dilakukan pada daerah tampak (visible) yaitu 200-400 nm. Dari Gambar 4.3 terlihat bahwa panjang gelombang maksimum pestisida sipermetrin terdapat pada λ max =220

Gambar 4.10 Grafik Panjang Gelombang Pestisida

4.5 Pengaruh Waktu Terhadap Degradasi Limbah Pestisida Sipermetrin Dengan Penambahan Katalis magnetit-TiO₂

Waktu degradasi optimum adalah waktu larutan sampel pestisidas akan mengalami presentase degradasi paling besar. Penentuan waktu degradasi optimum dilakukan dengan menambahkan magnetit-TiO₂ dengan rasio perbandingan 2:1, 1:1 dan 1:2 dengan konsentrasi 10 PPM. Selanjutnya

campuran tersebut akan di degradasi dengan radiasi didalam reaktor dengan selang menit 30, 60 dan 90 menit. Pada setiap menitnya larutan diambil dan diukur absorbansinya menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum 220 nm dari larutan pestisida. Hasil optimasi dapat dilihat pada gambar grafik berikut.

Gambar 4.11 Perbandingan rasio massa magnetit-TiO₂ 2:1

Dari gambar grafik diatas dapat dilihat bahwa pada perbandinga 2:1 dimana limbah pestisida yang paling banyak terdegradasi terjadi pada waktu 90 menit tanpa penyinaran dengan jumlah persen degradasi sebanyak 6,94%. Sedangkan dengan penyinaran limbah pestisida terdegradasi paling banyak 58,46%.

Gambar 4.12 Perbandingan rasio masa magnetit-TiO₂ 1:1

Dari gambar diatas dapat dilihat bahwa limbah pestisida dengan perbandingan konsentrasi magnetit-TiO₂ dengan variasi konsentrasi 1:1 yang paling banyak mengalami degradasi terjadi di waktu 90 menit tanpa penyinaran dengan persen degradasi sebanyak 9,86%. Sedangakn untuk perbandingan 1:1 dengan penyinaran hanya mampu mendegradasikan limbah sebanyak 4,47%.

Gambar 4.13 Perbandingan rasio massa magnetit-TiO₂ 1:2

Sedangkan untuk perbandingan magnetit-TiO₂ dengan rasio massa 1:2 yang paling banyak mengalami degradasi terjadi pada menit ke 60 tanpa penyinaran dengan persen degradasi sebanyak 12,94%. Sedangkan dengan penyinaran yang paling banyak mengalami degradasi terjadi di menit ke 90 dengan persen degradasi sebanyak 11,29s%.

4.6 Efektivitas Fotodegradasi Dengan Variasi Konsentrasi Magnetit-TiO₂

Untuk mengetahui efektifitas fotodegradasi dengan variasi magneti-TiO₂, larutan pestisida sipermetrin di degradasi dengan penambahan variasi konsentrasi magnetit-TiO₂ dengan perbandingan 1:2, 1:1 dan 2:1 pada larutan sampel pestisida dengan konsentrasi limbah 10 PPM dan variasi waktu selama 30, 60 dan 90 menit. Selanjutnya larutan diambil sebanyak 20ml untuk diukur absorbansinya dengan menggunakan spektrofotometer UV-Vis dengan rentang

panjang gelombang 200-400 nm. Untuk hasil dari degradasi limbah pestisida sipermetrin dengan variasi konsentrasi magnetit-TiO₂ dapat dilihat pada Tabel 4.3 sebagai berikut.

Tabel 4.3 Hasil Degradasi Pestisida Sipermetrin Dengan Rasio Massa Magnetit- TiO₂

Variasi Rasio Massa	Waktu	Absorbansi	%
Magnetit-TiO ₂	Degradasi		Degradasi
Tanpa Penyinaran			
	30 menit	0,792949	11,81%
1:2	60 menit	0,797718	12,94%
	90 menit	0,881357	12,78 %
	30 menit	0,908505	1,76%
1:1	60 menit	0,998126	11,80%
/ -	90 menit	0,804675	9,86%
	30 menit	0,822738	7,84%
2:1	60 menit	0,897267	0,50%
1 K	90 menit	0,830733	6,94%
Dengan Penyinaran		NI	
	30 menit	0,792703	11,20%
1:2	60 menit	0,737439	17,39%
2	90 menit	0,791917	11,29%
	30 menit	0,860965	3,56%
1:1	60 menit	0,869077	2,65%
	90 menit	0,852795	4,47%
V	30 menit	0,753237	15,62%
2:1	60 menit	0,65036	27,15%
	90 menit	0,840572	58,46%

Dari Tabel 4.3 diatas dapat dilihat bahwa hasil dari degradasi dengan variasi rasio massa magnetit-TiO₂ tanpa penyinaran yang paling banyak terdegradasi terdapat pada variasi rasio massa magnetit-TiO₂ dengan rasio pebandingan 1:2 dengan selang waktu 60 menit dengan persen degradasi

sebanyak 12,94%. Sedangkan untuk degradasi limbah variasi rasio massa magnetit-TiO₂ dengan menggunakan penyinaran UV terdapat pada variasi rasio massa magnetit-TiO₂ 2:1 dengan selang waktu 90 menit dengan persen degradasi sebanyak 58,46%. Dari data tersebut dapat menunjukkan bahwa dengan penambahan katalis magnetit-TiO₂ dan juga sinar UV dalam proses fotodegradasi dapat menurunkan serapan optik pada limbah pestisida sipermetrin dan juga semakin cepat dalam mendegradasi limbah pestisida sipermetrin

4.7 Laju Degradasi

Hasil dari laju degradasi menunjukkan bahwa banyaknya pestisida yang terdegradasi terdapat pada rasio massa magnetit-TiO₂ 2:1 dengan menggunakan penyinaran UV di menit ke 90 sebesar 0,005799. Dari kondisi tersebut dapat menunjukkan bahwa degradasi limbah pestisida dengan rasio massa magnetit-TiO₂ memberikan nilai laju degradasi yang paling tinggi. Hal ini menunjukkan bahwa degradasi dengan rasio massa magnetit-TiO₂ 2:1 dengan tanpa penyinaran UV lebih efektif dalam mendegradasi limbah pestisida. Untuk lebih jelas dapat dilihat pada tabel perhitungan laju degradasi sebagai berikut

Tabel 4.4 Laju degradasi pestisida

Variasi Rasio Massa Magnetit-TiO ₂	At	ΔΑ	Δt (menit)	Laju degradasi (abs/menit)
Tanpa Penyinaran	- and the latest		< /	
	0,792949	0,099822	30	0,003327
1:2	0,797718	0,095053	60	0,001584
	0,881357	0,011414	90	0,0001268
	0,908505	0,015734	30	0,0005244
1:1	0,998126	0,105355	60	0,001755
	0,804675	0,088096	90	0,000978

Variasi Rasio Massa			Δt	Laju
Magnetit-TiO ₂	At	ΔΑ		degradasi
			(menit)	(abs/menit)
	0,822738	0,70033	30	0,001131
2:1	0,897267	0,004496	60	7,49003
	0,830733	0,062038	90	0,006893
Dengan Penyinaran				
	0,792703	0,099868	30	0,00335
1:2	0,737439	0,155332	60	0,002588
	0,791917	0,100854	90	0,001131
	0,860965	0,031806	30	0,001060
1:1	0,869077	0,023694	60	0,000394
	0,852795	0,039976	90	0,000444
	0,753237	0,139534	30	0,004651
2:1	0,6 <mark>5</mark> 036	0,242411	60	0,004040
1 1	0,840572	<mark>0,05219</mark> 9	90	0,005799

 $A_0 = 0.892771$

Dimana dari Tabel 4.4 diatas dapat dilihat bahwa degradasi limbah pestisida dengan rasio massa magnetit-TiO₂ memberikan nilai laju degradasi yang paling tinggi. Hal ini menunjukkan bahwa degradasi dengan rasio massa magnetit-TiO₂ 2:1 tanpa menggunakan penyinaran UV lebih efektif dalam mendegradasi limbah pestisida.

Hal tersebut dapat dilihat pada kajian terdahulu dimana degradasi pestisida jenis diazinon dengan menggunakan fotokatalis massa TiO₂ sebesar 12,5 mg dapat mendegradasi pestisida sebanyak 90,4% dengan waktu 210 menit (Ramadhan & Amiruddin, 2013). Dan juga pada kajian terdahulu oleh (Zilfa et al., 2019)dimana pestisida dengan jenis permethrin dengan penambahan 8mg katalis TiO₂ *Anatase* dan menggunakan sinar UV 10 watt dapat mendegardasi sebanyak 85,65% dengan waktu 120 menit.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan maka dapat disimpulkan bahwa:

- 1. Penggunaan magnetit-TiO₂ dalam proses fotodegradasi mampu mendegradasi limbah pestisida sipermetrin
- 2. Perbandingan rasio massa magnetit-TiO₂ dalam fotodegradasi terjadi paling maksimal pada variasi 2:1 dengan penyinaran UV dengan jumlah degradasi sebanyak 58,46% pada menit ke 90. Sedangkan degradasi limbah tanpa penyinaran UV paling banyak terdegradasi terjadi pada rasio massa-magnetit-TiO₂ 1:2 di menit ke 60 dengan jumlah degradasi sebanyak 12,78%.
- 3. Pada laju degradasi pestisida terhadap rasio massa magnetit-TiO₂ didapatkan bahwa degradasi dengan rasio massa magnetit-TiO₂ 2:1 dengan menggunakan penyinaran UV lebih efektif dalam mendegradasi limbah pestisida

5.2 Saran

- 1. Perlu dilakukan kajian tambah waktu kontak limbah dengan katalis untuk mengamati kemampuan dalam fotodegradasi.
- 2. Perlu pengujian konsentrasi limbah setelah di degradasi
- 3. Perlu kajian tambahan dalam mendapatkan katalis dalam ukuran nanometer dan upaya untuk mencegah terjadinya gumpalan atau aglomerasi bahan.

DAFTAR PUSTAKA

- Andarini, N., & Sarosa, Y. (2015). Sintesis Fotokatalis Lapis Tipis TiO2/SiO2 untuk Fotodegradasi Pestisida Diazinon. *Prosiding Seminar Nasional Kimia*, 96–100.
- Arif, A. (2015). Pengaruh Bahan Kimia Terhadap Penggunaan Pestisida Lingkungan. *Jurnal Farmasi UIN Alauddin Makassar*, *3*(4), 134–143.
- Fatimah, I., Sugiharto, E., Wijaya, K., Tahir, I., & Kamalia, K. (2010). TITANIUM OXIDE DISPERSED ON NATURAL ZEOLITE (TiO₂/ZEOLITE) AND ITS APPLICATION FOR CONGO RED PHOTODEGRADATION. *Indonesian Journal of Chemistry*, 6(1), 38–42. https://doi.org/10.22146/ijc.21770
- Ivnaini, A. (2019). Analisa Kebijakan Hukum Lingkungan dalam Pengelolaan Pestisida. *Bestuur*, 7(2), 93–105.
- Keputusan, S. P., Baru, P. P., Metode, M., & Product, W. (2017). Digital Digital Repository Repository Universitas Universitas Jember Jember Digital Digital Repository Repository Universitas Universitas Jember Jember.
- Khoiriah, K., Wellia, D. V., & Safni, S. (2019). Degradasi Pestisida Diazinon dengan Proses Fotokatalisis Sinar Matahari Menggunakan Katalis C,N-CODOPED TiO2. Jurnal Kimia Dan Kemasan, 41(1), 17. https://doi.org/10.24817/jkk.v41i1.3834
- Kurade, M. B., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2016). Dampak Aplikasi Pestisida Sipermetrin, Deltametrin, Klorpirifos dan λ-Sihalotrin Terhadap Kandungan Residu Pestisida pada Biji Kakao. *Algal Research*, 20, 126–134. https://doi.org/10.1016/j.algal.2016.10.003
- Moussavi, G., Hosseini, H., & Alahabadi, A. (2013). The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. *Chemical Engineering Journal*, 214, 172–179. https://doi.org/10.1016/j.cej.2012.10.034
- Puspitarum, D. L., Safitri, G., Ardiyanti, H., & Anrokhi, M. S. (2019).

- KARAKTERISASI DAN SIFAT KEMAGNETAN PASIR BESI di WILAYAH LAMPUNG TENGAH. *Jurnal Pendidikan Fisika*, 7(2), 236. https://doi.org/10.24127/jpf.v7i2.2189
- Ramadhan, L. O. A., & Amiruddin. (2013). Fotodegradasi Pestisida Diazinon dalam TiO 2 Tersuspensi Photodegradation Of Diazinon Pesticide In Suspension Of TiO 2. *Journal*, *14*(1), 23–28. http://jurnal.unej.ac.id/index.php/JID
- Rianto, D., Yulfriska, N., Murti, F., Hidayati, H., & Ramli, R. (2018). Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method. *IOP Conference Series: Materials Science and Engineering*, 335(1). https://doi.org/10.1088/1757-899X/335/1/012012
- Said, A. (2021). Degradasi Pewarna Tartrazin Dengan Fotokatalis Titanium Dioksida (Tio2). *Cokroaminoto Journal of Chemical Science*, 3(1), 21–27.
- Siahaan, S., & Restiaty, I. (2021). Pencemaran Tanah Oleh Pestisida di Perkebunan Sayur Kelurahan Eka Jaya Kecamatan Jambi Selatan Kota Jambi (Studi Keberadaan Jamur Makroza dan Cacing Tanah). 21(1), 460–466. https://doi.org/10.33087/jiubj.v21i1.1348
- Sucahya, T. N., Permatasari, N., & Nandiyanto, A. B. D. (2016). REVIEW: Fotokatalisis untuk Pengolahan Limbah Cair. *Jurnal Integrasi Proses*, 6(1), 1–15. http://dx.doi.org/10.36055/jip.v6i2.430
- Suriadi, A., Shofiyani, A., & Destiarti, L. (2017). Sintesis Dan Karakterisasi Pasir Besi Terlapis Mangan Dioksida Serta Aplikasinya Untuk Penurunan Kadar Ion Fosfat Dalam Air. *Jkk*, 6(1), 64–72.
- Tampak, I. S. (2021). FOTODEGRADASI RHODAMIN B OLEH KATALIS ZEOLIT ALAM-TiO 2 /ZnO DAN IRRADIASI SINAR TAMPAK N. K. A. Oktapiani, I N. Simpen*, dan I M. S. Negara. 15(1).
- Togibasa, O., Akbar, M., Pratama, A., & Bijaksana, S. (2019). Distribution of Magnetic Susceptibility of Natural Iron Sand in the Sarmi Coast Area. *Journal* of Physics: Conference Series, 1204(1). https://doi.org/10.1088/1742-

6596/1204/1/012074

Zilfa, Suyani, H., Safni, & Jamarun, N. (2019). Degradasi Senyawa Permetrin Secara Fotolisis Dengan TiO2-Anatase Sebagai Katalis. *Jurnal Sains Materi Indonesia*, 11, 107–111.

Lampiran I

Perhitungan Kurva Standar Sipermetrin

Perhitungan Konsentrasi Sipermetrin

Hasil dari presentase degradasi limbah pestisida sipermetrin oleh Fe₃O₄-TiO₂ dihitung dengan menggunakan persamaan 3.2 dengan rumus sebagai berikut:

$$\%D = \frac{|Co - Ct|}{Co} x 100\%$$

Keterangan:

%D = Persen degradasi

Co = Konsentrasi awal

Ct = Konsentrasi setelah penyinaran

Perbandingan 1:2 tanpa penyinaran

• Data awal perbandingan 1:2 tanpa penyinaran, absorbansi sebesar 0,853122

$$\%D = \frac{|Co - Ct|}{Co} \times 100\%$$

$$\%D = \frac{|0,892771 - 0,853122|}{0.892771} \times 100\%$$

$$%D = 44,41\%$$

%D = 11,18%

Perbandingan 1:2 tanpa penyinaran (30 menit) absorbansi sebesar 0,792949

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,792949|}{0,892771} x100\%$$

• Perbandingan 1:2 tanpa penyinaran (60 menit) absorbansi sebesar 0,797718

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0.892771 - 0.797718|}{0.892771} x100\%$$

$$\%D = 12.94\%$$

Perbandingan 1:2 tanpa penyinaran (90 menit) absorbansi sebesar 0,881357

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0.892771 - 0.881357|}{0.892771} x100\%$$

$$\%D = 12.78 \%$$

Perbandingan 1:2 dengan penyinaran

Data awal perbandingan 1:2 dengan penyinaran, absorbansi sebesar 0,704183

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,704183|}{0,892771} x100\%$$

$$\%D = 21,123\%$$

 Data awal perbandingan 1:2dengan penyinaran (30 menit) absorbansi sebesar 0,792703

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,792703|}{0,892771} x100\%$$

$$\%D = 11,20\%$$

 Data awal perbandingan 1:2dengan penyinaran (60 menit) absorbansi sebesar 0,737439

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,737439|}{0,892771} x100\%$$

$$\%D = 17.39\%$$

 Data awal perbandingan 1:2dengan penyinaran (60 menit) absorbansi sebesar 0,791917

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,791917|}{0,892771} x100\%$$

$$\%D = 11.29\%$$

Perbandingan 1:1 tanpa penyinaran

Data awal perbandingan 1:1 tanpa penyinaran, absorbansi sebesar 1,002832

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 1,002832|}{0,892771} x100\%$$

$$\%D = 12,32\%$$

 Data awal perbandingan 1:1 tanpa penyinaran (30 menit), absorbansi sebesar 0,908505

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,908505|}{0,892771} x100\%$$

$$\%D = 1,76\%$$

 Data awal perbandingan 1:1 tanpa penyinaran (60 menit), absorbansi sebesar 0,998126

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,998126|}{0,892771} x100\%$$

$$\%D = 1,76\%$$

 Data awal perbandingan 1:1 tanpa penyinaran (90 menit), absorbansi sebesar 0,804675

$$\%D = \frac{Co - Ct}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,804675|}{0,892771} x100\%$$

$$\%D = 9,867\%$$

Perbandingan 1:1 dengan penyinaran

Data awal perbandingan 1:1 dengan penyinaran, absorbansi sebesar 0,854496

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,854496|}{0,892771} x100\%$$

$$\%D = 4,292\%$$

 Data awal perbandingan 1:1 dengan penyinaran (30 menit), absorbansi sebesar 0,860965

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,860965|}{0,892771} x100\%$$

$$\%D = 3,562\%$$

 Data awal perbandingan 1:1 dengan penyinaran (0 menit), absorbansi sebesar 0,869077

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,869077|}{0,892771} x100\%$$

$$\%D = 2,653\%$$

 Data awal perbandingan 1:1 dengan penyinaran (90 menit), absorbansi sebesar 0,852795

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,852795|}{0,892771} x100\%$$

$$\%D = 4,477\%$$

Perbandinga 2:1 tanpa penyinaran

Data awal perbandingan 2:1 tanpa penyinaran, absorbansi sebesar 0,781303

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,781303|}{0,892771} x100\%$$

$$\%D = 12,48\%$$

 Data awal perbandingan 2:1 tanpa penyinaran (30 menit), absorbansi sebesar 0,822738

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,822738|}{0,892771} x100\%$$

$$\%D = 7,84\%$$

 Data awal perbandingan 2:1 tanpa penyinaran (60 menit), absorbansi sebesar 0,897267

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|(0.892771 - 0.897267)|}{0.892771} x100\%$$

$$\%D = -0.50\%$$

 Data awal perbandingan 2:1 tanpa penyinaran (90 menit), absorbansi sebesar 0,830733

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,830733|}{0,892771} x100\%$$

$$\%D = 6.94\%$$

Perbandingan 2:1 dengan penyinaran

Data awal perbandingan 2:1 dengan penyinaran, absorbansi sebesar 0,801207

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0,892771 - 0,801207|}{0,892771} x100\%$$

$$\%D = 10,256\%$$

 Data awal perbandingan 2:1 dengan penyinaran (30 menit), absorbansi sebesar 0,753237

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0.892771 - 0.753237|}{0.892771} x100\%$$

$$\%D = 15.62\%$$

 Data awal perbandingan 2:1 dengan penyinaran (60 menit), absorbansi sebesar 0,65036

$$\%D = \frac{|Co - Ct|}{Co} x100\%$$

$$\%D = \frac{|0.892771 - 0.65036|}{0.892771} x100\%$$

$$\%D = 27.15\%$$

 Data awal perbandingan 2:1 dengan penyinaran (90 menit), absorbansi sebesar 0,840572

$$\%D = \frac{|Co - Ct|}{Co} x 100\%$$

$$\%D = \frac{|0,892771 - 0,840572|}{0,892771} x100\%$$

$$\%D = 58,46\%$$

Lampiran 2

Perhitungan laju degradasi rasio massa magnetit-TiO₂ 1:2

• Rasio massa Magnetit-TiO₂ 1:2 tanpa penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$
$$= \frac{0.892771 - 0.792949}{30 - 0}$$
$$= 0.003327 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.797718}{60 - 0}$$

$$= 0.001584 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0,892771 - 0,881357}{90 - 0}$$

$$= 0,0001268 \text{ abs/menit}$$

• Rasio massa Magnetit-TiO₂ 1:2 dengan penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.792703}{30 - 0}$$

$$= 0.00335 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.737439}{60 - 0}$$

$$= 0.002588 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.791917}{90 - 0}$$

$$= 0.001131 \text{ abs/menit}$$

Perhitungan laju degradasi rasio massa magnetit-TiO2 1:1

• Rasio massa Magnetit-TiO₂ 1:1 tanpa penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.908505}{30 - 0}$$

$$= -0.0005244 \text{ abs/menit}$$

$$V_2 = \frac{\Delta A}{\Delta t} = \frac{A0 - At2}{tt - t0}$$

$$= \frac{0.892771 - 0.998126}{60 - 0}$$

$$= -0.001755 \text{ abs/menit}$$

$$V_3 = \frac{\Delta A}{\Delta t} = \frac{A0 - At3}{tt - t0}$$
$$= \frac{0.892771 - 0.804675}{90 - 0}$$
$$= 0.000978 \text{ abs/menit}$$

• Rasio massa Magnetit-TiO₂ 1:1 dengan penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$
$$= \frac{0.892771 - 0.860965}{30 - 0}$$
$$= 0.001060 \text{ abs/menit}$$

$$V_2 = \frac{\Delta A}{\Delta t} = \frac{A0 - At2}{tt - t0}$$

$$= \frac{0,892771 - 0,869077}{60 - 0}$$

$$= 0,000394 \text{ abs/menit}$$

$$V_3 = \frac{\Delta A}{\Delta t} = \frac{A0 - At3}{tt - t0}$$
$$= \frac{0,892771 - 0,852795}{90 - 0}$$
$$= 0,000444 \text{ abs/menit}$$

Perhitungan laju degradasi rasio massa magnetit-TiO2 2:1

• Rasio massa Magnetit-TiO₂ 2:1 tanpa penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$
$$= \frac{0.892771 - 0.822738}{30 - 0}$$
$$= 0.001131 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.897267}{60 - 0}$$

$$= -7.490033 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.830733}{90 - 0}$$

$$= 0.006893 \text{ abs/menit}$$

• Rasio massa Magnetit-TiO₂ 2:1 dengan penyinaran UV

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0,892771 - 0,753237}{30 - 0}$$

$$= 0,004651 \text{ abs/menit}$$

$$V_{1} = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$

$$= \frac{0.892771 - 0.65036}{60 - 0}$$

$$= 0.004040 \text{ abs/menit}$$

$$V_1 = \frac{\Delta A}{\Delta t} = \frac{A0 - At1}{tt - t0}$$
$$= \frac{0,892771 - 0,840572}{90 - 0}$$
$$= 0,005799 \text{ abs/menit}$$

LAMPIRAN 3 FOTO KEGIATAN PENELITIAN

Pengambilan sampel pasir besi

Pemisahan pasir besi dari pengotor

Penghalusan pasir besi

Pengayakan pasir besi

Sintesis pasir besi

Stirrer pasir besi

Pemisahan pasir besi dengan larutan

Pencucian magnetit sampai pH netral

Magnetit hasil sintesis setelah di oven

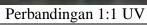
Penggabungan magnetit-TiO₂

Penggabungan dengan shaker

Pembuatan limbah pestisida

Pembuatan limbah pestisida

perbandingan 2:1 non UV



Perbandinga 2:1 UV

Perbandingan 1:2 non UV

Perbandingan 1:1 Non UV

